Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2407330121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980901

RESUMO

Kinesin-1 ensembles maneuver vesicular cargoes through the three-dimensional (3D) intracellular microtubule (MT) network. To define how such cargoes navigate MT intersections, we first determined how many kinesins from an ensemble on a lipid-based cargo simultaneously engage a MT, and then determined the directional outcomes (straight, turn, terminate) for liposome cargoes at perpendicular MT intersections. Run lengths of 350-nm diameter liposomes decorated with up to 20, constitutively active, truncated kinesin-1 KIF5B (K543) were longer than single motor transported cargo, suggesting multiple motor engagement. However, detachment forces of lipid-coated beads with ~20 kinesins, measured using an optical trap, showed no more than three simultaneously engaged motors, with a single engaged kinesin predominating, indicating anticooperative MT binding. At two-dimensional (2D) and 3D in vitro MT intersections, liposomes frequently paused (~2 s), suggesting kinesins simultaneously bind both MTs and engage in a tug-of-war. Liposomes showed no directional outcome bias in 2D (1.1 straight:turn ratio) but preferentially went straight (1.8 straight:turn ratio) in 3D intersections. To explain these data, we developed a mathematical model of liposome transport incorporating the known mechanochemistry of kinesins, which diffuse on the liposome surface, and have stiff tails in both compression and extension that impact how motors engage the intersecting MTs. Our model predicts the ~3 engaged motor limit observed in the optical trap and the bias toward going straight in 3D intersections. The striking similarity of these results to our previous study of liposome transport by myosin Va suggests a "universal" mechanism by which cargoes navigate 3D intersections.


Assuntos
Cinesinas , Lipossomos , Microtúbulos , Cinesinas/metabolismo , Cinesinas/química , Lipossomos/química , Lipossomos/metabolismo , Microtúbulos/metabolismo , Transporte Biológico , Animais , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química , Pinças Ópticas
2.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999987

RESUMO

The actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm). The unique structural and functional diversity of microfilaments is achieved through the diversity of Tpm isoforms. In our work, we studied the properties of the cytoplasmic isoforms Tpm1.8 and Tpm1.9. The results showed that these isoforms are highly thermostable and differ in the stability of their central and C-terminal fragments. The properties of these isoforms were largely determined by the 6th exons. Thus, the strength of the end-to-end interactions, as well as the affinity of the Tpm molecule for F-actin, differed between the Tpm1.8 and Tpm1.9 isoforms. They were determined by whether an alternative internal exon, 6a or 6b, was included in the Tpm isoform structure. The strong interactions of the Tpm1.8 and Tpm1.9 isoforms with F-actin led to the formation of rigid actin filaments, the stiffness of which was measured using an optical trap. It is quite possible that the structural and functional features of the Tpm isoforms largely determine the appearance of these isoforms in the rigid actin structures of the cell cortex.


Assuntos
Citoesqueleto de Actina , Actinas , Isoformas de Proteínas , Tropomiosina , Tropomiosina/metabolismo , Tropomiosina/química , Tropomiosina/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Citoesqueleto de Actina/metabolismo , Animais , Actinas/metabolismo , Actinas/química , Citoplasma/metabolismo , Humanos , Éxons , Ligação Proteica , Estabilidade Proteica
3.
Adv Mater ; 36(32): e2401115, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814436

RESUMO

Precisely controlled manipulation of nonadherent single cells is often a pre-requisite for their detailed investigation. Optical trapping provides a versatile means for positioning cells with submicrometer precision or measuring forces with femto-Newton resolution. A variant of the technique, called indirect optical trapping, enables single-cell manipulation with no photodamage and superior spatial control and stability by relying on optically trapped microtools biochemically bound to the cell. High-resolution 3D lithography enables to prepare such cell manipulators with any predefined shape, greatly extending the number of achievable manipulation tasks. Here, it is presented for the first time a novel family of cell manipulators that are deformable by optical tweezers and rely on their elasticity to hold cells. This provides a more straightforward approach to indirect optical trapping by avoiding biochemical functionalization for cell attachment, and consequently by enabling the manipulated cells to be released at any time. Using the photoresist Ormocomp, the deformations achievable with optical forces in the tens of pN range and present three modes of single-cell manipulation as examples to showcase the possible applications such soft microrobotic tools can offer are characterized. The applications describe here include cell collection, 3D cell imaging, and spatially and temporally controlled cell-cell interaction.


Assuntos
Pinças Ópticas , Análise de Célula Única , Humanos , Robótica/instrumentação , Elasticidade , Animais
4.
Bull Exp Biol Med ; 176(3): 324-327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38336971

RESUMO

Cardiac myosin binding protein-C (cMyBP-C) located in the C-zone of myocyte sarcomere is involved in the regulation of myocardial contraction. Its N-terminal domains C0, C1, C2, and the m-motif between C1 and C2 can bind to the myosin head and actin of the thin filament and affect the characteristics of their interaction. Measurements using an optical trap showed that the C0-C2 fragment of cMyBP-C increases the interaction time of cardiac myosin with the actin filament, while in an in vitro motility assay, it dose-dependently reduces the sliding velocity of actin filaments. Thus, it was found that the N-terminal part of cMyBP-C affects the kinetics of the myosin cross-bridge.


Assuntos
Actinas , Proteínas de Transporte , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas Cardíacas/metabolismo , Ligação Proteica/fisiologia , Miocárdio/metabolismo
5.
Methods Mol Biol ; 2772: 179-190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411814

RESUMO

Optical tweezers have been used to trap and micro-manipulate several biological specimens ranging from DNA, macromolecules, organelles, to single-celled organisms. Using a combination of the refraction and scattering of laser light from a focused laser beam, refractile objects are physically captured and can be moved within the surrounding media. The technique is routinely used to determine biophysical properties such as the forces exerted by motor proteins. Here, we describe how optical tweezers combined with total internal reflection fluorescence microscopy (TIRF) can be used to assess physical interactions between organelles, more specifically the ER and Golgi bodies in plant cells.


Assuntos
Microscopia , Pinças Ópticas , Células Vegetais , Complexo de Golgi , Biofísica
6.
J Mol Biol ; 436(2): 168381, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081382

RESUMO

Much is still unknown about the mechanisms by which helicases unwind duplex DNA. Whereas structure-based models describe DNA unwinding as occurring by the ATPase motors mechanically pulling the DNA duplex across a wedge domain in the helicase, biochemical data show that processive DNA unwinding by E. coli RecBCD helicase can occur in the absence of ssDNA translocation by the canonical RecB and RecD motors. Here we show that DNA unwinding is not a simple consequence of ssDNA translocation by the motors. Using stopped-flow fluorescence approaches, we show that a RecB nuclease domain deletion variant (RecBΔNucCD) unwinds dsDNA at significantly slower rates than RecBCD, while the ssDNA translocation rate is unaffected. This effect is primarily due to the absence of the nuclease domain since a nuclease-dead mutant (RecBD1080ACD), which retains the nuclease domain, showed no change in ssDNA translocation or dsDNA unwinding rates relative to RecBCD on short DNA substrates (≤60 base pairs). Hence, ssDNA translocation is not rate-limiting for DNA unwinding. RecBΔNucCD also initiates unwinding much slower than RecBCD from a blunt-ended DNA. RecBΔNucCD also unwinds DNA ∼two-fold slower than RecBCD on long DNA (∼20 kilo base pair) in single molecule optical tweezer experiments, although the rates for RecBD1080ACD unwinding are intermediate between RecBCD and RecBΔNucCD. Surprisingly, significant pauses in DNA unwinding occur even in the absence of chi (crossover hotspot instigator) sites. We hypothesize that the nuclease domain influences the rate of DNA base pair melting, possibly allosterically and that RecBΔNucCD may mimic a post-chi state of RecBCD.


Assuntos
DNA Helicases , DNA de Cadeia Simples , Proteínas de Escherichia coli , Escherichia coli , Exodesoxirribonuclease V , DNA Helicases/química , DNA Helicases/genética , DNA de Cadeia Simples/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/genética , Domínios Proteicos
7.
bioRxiv ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076816

RESUMO

Kinesin-1 ensembles maneuver vesicular cargoes through intersections in the 3-dimensional (3D) intracellular microtubule (MT) network. To characterize directional outcomes (straight, turn, terminate) at MT intersections, we challenge 350 nm fluid-like liposomes transported by ~10 constitutively active, truncated kinesin-1 KIF5B (K543) with perpendicular 2-dimensional (2D) and 3D intersections in vitro. Liposomes frequently pause at 2D and 3D intersections (~2s), suggesting that motor teams can simultaneously engage each MT and undergo a tug-of-war. Once resolved, the directional outcomes at 2D MT intersections have a straight to turn ratio of 1.1; whereas at 3D MT intersections, liposomes more frequently go straight (straight to turn ratio of 1.8), highlighting that spatial relationships at intersections bias directional outcomes. Using 3D super-resolution microscopy (STORM), we define the gap between intersecting MTs and the liposome azimuthal approach angle heading into the intersection. We develop an in silico model in which kinesin-1 motors diffuse on the liposome surface, simultaneously engage the intersecting MTs, generate forces and detach from MTs governed by the motors' mechanochemical cycle, and undergo a tug-of-war with the winning team determining the directional outcome in 3D. The model predicts that 1-3 motors typically engage the MT, consistent with optical trapping measurements. Modeled liposomes also predominantly go straight through 3D intersections over a range of intersection gaps and liposome approach angles, even when obstructed by the crossing MT. Our observations and modeling offer mechanistic insights into how cells might tune the MT cytoskeleton, cargo, and motors to modulate cargo transport.

8.
Reprod Biol Endocrinol ; 21(1): 93, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865766

RESUMO

The application of laser technology in the field of assisted reproductive technology (ART) has experienced rapid growth over the past decades owing to revolutionary techniques such as intracytoplasmic sperm injection (ICSI), preimplantation genetic testing (PGT), and in vitro manipulation of gametes and embryos. For male gametes, in vitro manipulation techniques include spermatozoa selection, sorting, immobilization, and quality assessment. A number of studies have been conducted to investigate the application of different laser technologies in the manipulation of human spermatozoa. However, there is a lack of a unified understanding of laser application in the in vitro manipulation of sperm and safety considerations in ART and, subsequently, the inability to make clear and accurate decisions on the clinical value of these laser technologies. This review summarizes the advancements and improvements of laser technologies in the manipulation of human spermatozoa, such as photobiomodulation therapy, laser trap systems for sperm analysis and sorting, laser-assisted selection of immotile sperm and laser-assisted immobilization of sperm prior to ICSI. The safety of those technologies used in ART is also discussed. This review will provide helpful and comprehensive insight into the applications of laser technology in the manipulation of human spermatozoa.


Assuntos
Sêmen , Espermatozoides , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas , Motilidade dos Espermatozoides , Lasers
9.
Appl Spectrosc ; 77(11): 1300-1310, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37710971

RESUMO

Single particles trapped in an optical trap may experience temperature elevation, yet direct measurement of temperature and its distribution inside the optical trap of several to hundreds of microns in size remains a big challenge. We introduce a method that can measure the temperature inside a universal optical trap (UOT) using Raman spectroscopy of single trapped particles of high thermal conductivity. We measured temperature and temperature distributions inside the UOT using Raman shifts of single-walled carbon nanotubes (SWCNTs) and micron-sized diamonds (MSDs), which are heated by trapping laser beams directly or indirectly, depending on the location of the particle in the trap. We show that the temperature at the center of the UOT is much lower than the temperature along the hollow beams that form a hollow, cage-shaped UOT. In the range of the trapping laser power of 200-2950 mW, the surface temperature of particles trapped at the center of a UOT changes from 322 K to 830 K, correspondingly. This result gives a heating rate as a high thermal-absorbing particle trapped in the center of the UOT with 18.3 ± 0.4 °C/100 mW. In addition, the temperature gradient outside the UOT was also characterized by trapping SWCNT particles outside the UOT. Results show that when a light-absorbing particle is trapped for the study of material property, phase transitions, surface equilibrium process, chemical reactions, etc., this method can be used to measure temperature distribution and its variations in the trap and its surroundings.

10.
Nano Lett ; 23(9): 4008-4013, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098832

RESUMO

The single-beam magneto-optical trap (MOT) based on the diffractive optical element offers a new route to develop compact cold atom sources. However, the optical efficiency in the previous single-beam MOT systems is usually low and unbalanced, which will affect the quality of the trapped atoms. To solve this issue, we developed a centimeter-scale dielectric metasurface optical chip with dynamic phase distributions, which was used to split a single incident laser beam into five separate ones with well-defined polarization states and uniform energy distributions. The measured diffraction efficiency of the metasurface is up to 47%. A single-beam MOT integrated with the metasurface optical chip was then used to trap the 87Rb atoms with numbers ∼1.4 × 108 and temperatures ∼7.0 µK. The proposed concept in this work may provide a promising solution for developing ultracompact cold atom sources.

11.
Proc Natl Acad Sci U S A ; 120(12): e2221309120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917660

RESUMO

DNA compaction is required for the condensation and resolution of chromosomes during mitosis, but the relative contribution of individual chromatin factors to this process is poorly understood. We developed a physiological, cell-free system using high-speed Xenopus egg extracts and optical tweezers to investigate real-time mitotic chromatin fiber formation and force-induced disassembly on single DNA molecules. Compared to interphase extract, which compacted DNA by ~60%, metaphase extract reduced DNA length by over 90%, reflecting differences in whole-chromosome morphology under these two conditions. Depletion of the core histone chaperone ASF1, which inhibits nucleosome assembly, decreased the final degree of metaphase fiber compaction by 29%, while depletion of linker histone H1 had a greater effect, reducing total compaction by 40%. Compared to controls, both depletions reduced the rate of compaction, led to more short periods of decompaction, and increased the speed of force-induced fiber disassembly. In contrast, depletion of condensin from metaphase extract strongly inhibited fiber assembly, resulting in transient compaction events that were rapidly reversed under high force. Altogether, these findings support a speculative model in which condensin plays the predominant role in mitotic DNA compaction, while core and linker histones act to reduce slippage during loop extrusion and modulate the degree of DNA compaction.


Assuntos
Cromatina , Cromossomos , Animais , Xenopus laevis/genética , DNA , Mitose
12.
Eur Biophys J ; 52(1-2): 91-100, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36929427

RESUMO

Lithium has been the treatment of choice for patients with bipolar disorder. However, lithium overdose happens more frequently since it has a very narrow therapeutic range in blood, necessitating investigation of its adverse effects on blood cells. The possible changes that lithium exposure may have on functional and morphological characteristics of human red blood cells (RBCs) have been studied ex vivo using single-cell Raman spectroscopy, optical trapping, and membrane fluorescent probe. The Raman spectroscopy was performed with excitation at 532 nm light, which also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction of lithium-exposed RBCs was observed to decline with lithium concentration, indicating irreversible oxygenation of intracellular Hb from lithium exposure. The lithium exposure may also have an effect on RBC membrane, which was investigated via optical stretching in a laser trap and the results suggest lower membrane fluidity for the lithium-exposed RBCs. The membrane fluidity of RBCs was further studied using the Prodan generalized polarization method and the results verify the reduction of membrane fluidity upon lithium exposure.


Assuntos
Eritrócitos , Lítio , Humanos , Lítio/farmacologia , Lítio/análise , Eritrócitos/química , Hemoglobinas , Lasers , Análise Espectral Raman
13.
Methods Mol Biol ; 2623: 113-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36602683

RESUMO

In this chapter, we describe methods for reconstituting and analyzing the transport of isolated endogenous cargoes in vitro. Intracellular cargoes are transported along microtubules by teams of kinesin and dynein motors and their cargo-specific adaptor proteins. Observations from living cells show that organelles and vesicular cargoes exhibit diverse motility characteristics. Yet, our knowledge of the molecular mechanisms by which intracellular transport is regulated is not well understood. Here, we describe step-by-step protocols for the extraction of phagosomes from cells at different stages of maturation, and reconstitution of their motility along microtubules in vitro. Quantitative immunofluorescence and photobleaching techniques are also described to measure the number of motors and adaptor proteins on these isolated cargoes. In addition, we describe techniques for tracking the motility of isolated cargoes along microtubules using TIRF microscopy and quantitative force measurements using an optical trap. These methods enable us to study how the sets of motors and adaptors that drive the transport of endogenous cargoes regulate their trafficking in cells.


Assuntos
Dineínas , Microtúbulos , Microtúbulos/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Transporte Biológico , Fagossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
14.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074043

RESUMO

Microtubules are dynamic cytoskeletal filaments that can generate forces when polymerizing and depolymerizing. Proteins that follow growing or shortening microtubule ends and couple forces to cargo movement are important for a wide range of cellular processes. Quantifying these forces and the composition of protein complexes at dynamic microtubule ends is challenging and requires sophisticated instrumentation. Here, we present an experimental approach to estimate microtubule-generated forces through the extension of a fluorescent spring-shaped DNA origami molecule. Optical readout of the spring extension enables recording of force production simultaneously with single-molecule fluorescence of proteins getting recruited to the site of force generation. DNA nanosprings enable multiplexing of force measurements and only require a fluorescence microscope and basic laboratory equipment. We validate the performance of DNA nanosprings against results obtained using optical trapping. Finally, we demonstrate the use of the nanospring to study proteins that couple microtubule growth and shortening to force generation.


Assuntos
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Fenômenos Mecânicos , Microscopia de Fluorescência , Microtúbulos/metabolismo
15.
Fundam Res ; 3(1): 57-62, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933574

RESUMO

Optically levitated oscillators in high vacuum have excellent environmental isolation and low mass compared with conventional solid-state sensors, which makes them suitable for ultrasensitive force detection. The force resolution usually scales with the measurement bandwidth, which represents the ultimate detection capability of the system under ideal conditions if sufficient time is provided for measurement. However, considering the stability of a real system, a method based on the Allan variance is more reliable to evaluate the actual force detection performance. In this study, a levitated optomechanical system with a force detection sensitivity of 6.33 ± 1.62 zN/Hz1/2 was demonstrated. And for the first time, the Allan variance was introduced to evaluate the system stability due to the force sensitivity fluctuations. The force detection resolution of 166.40 ± 55.48 yN was reached at the optimal measurement time of 2751 s. The system demonstrated in this work has the best force detection performance in both sensitivity and resolution that have been reported so far for optically levitated particles. The reported high-sensitivity force detection system is an excellent candidate for the exploration of new physics such as fifth force searching, high-frequency gravitational waves detection, dark matter research and so on.

16.
Biosensors (Basel) ; 12(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36140075

RESUMO

We demonstrate an optofluidic device which utilizes the optical scattering and gradient forces for particle trapping in microchannels featuring 300 nm thick membranes. On-chip waveguides are used to direct light into microfluidic trapping channels. Radiation pressure is used to push particles into a protrusion cavity, isolating the particles from liquid flow. Two different designs are presented: the first exclusively uses the optical scattering force for particle manipulation, and the second uses both scattering and gradient forces. Trapping performance is modeled for both cases. The first design, referred to as the orthogonal force design, is shown to have a 80% capture efficiency under typical operating conditions. The second design, referred to as the gradient force design, is shown to have 98% efficiency under the same conditions.


Assuntos
Microfluídica , Pinças Ópticas
17.
Methods Mol Biol ; 2478: 11-22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36063316

RESUMO

A brief history of optical forces, the invention of optical tweezers, and their application to biological problems.


Assuntos
Pinças Ópticas
18.
Methods Mol Biol ; 2478: 273-312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36063324

RESUMO

Single-molecule force spectroscopy can precisely probe the biomechanical interactions of proteins that unwind duplex DNA and bind to and wrap around single-stranded (ss)DNA. Yet assembly of the required substrates, which often contain a ssDNA segment embedded within a larger double-stranded (ds)DNA construct, can be time-consuming and inefficient, particularly when using a standard three-way hybridization protocol. In this chapter, we detail how to construct a variety of force-activated DNA substrates more efficiently. To do so, we engineered a dsDNA molecule with a designed sequence of specified GC content positioned between two enzymatically induced, site-specific nicks. Partially pulling this substrate into the overstretching transition of DNA (~65 pN) using an optical trap led to controlled dissociation of the ssDNA segment delineated by the two nicks. Here, we describe protocols for generating ssDNA of up to 1000 nucleotides as well as more complex structures, such as a 120-base-pair DNA hairpin positioned next to a 33-nucleotide ssDNA segment. The utility of the hairpin substrate was demonstrated by measuring the motion of E. coli. RecQ, a 3'-to-5' DNA helicase.


Assuntos
Escherichia coli , Pinças Ópticas , DNA/química , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética
19.
Curr Biol ; 32(17): 3862-3870.e6, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961316

RESUMO

Intracellular transport is essential for neuronal function and survival. The most effective plus-end-directed neuronal transporter is the kinesin-3 KIF1C, which transports large secretory vesicles and endosomes.1-4 Mutations in KIF1C cause hereditary spastic paraplegia and cerebellar dysfunction in human patients.5-8 In contrast to other kinesin-3s, KIF1C is a stable dimer and a highly processive motor in its native state.9,10 Here, we establish a baseline for the single-molecule mechanics of Kif1C. We show that full-length KIF1C molecules can processively step against the load of an optical trap and reach average stall forces of 3.7 pN. Compared with kinesin-1, KIF1C has a higher propensity to slip backward under load, which results in a lower maximal single-molecule force. However, KIF1C remains attached to the microtubule while slipping backward and re-engages quickly, consistent with its super processivity. Two pathogenic mutations, P176L and R169W, that cause hereditary spastic paraplegia in humans7,8 maintain fast, processive single-molecule motility in vitro but with decreased run length and slightly increased unloaded velocity compared with the wild-type motor. Under load in an optical trap, force generation by these mutants is severely reduced. In cells, the same mutants are impaired in producing sufficient force to efficiently relocate organelles. Our results show how its mechanics supports KIF1C's role as an intracellular transporter and explain how pathogenic mutations at the microtubule-binding interface of KIF1C impair the cellular function of these long-distance transporters and result in neuronal disease.


Assuntos
Cinesinas , Paraplegia Espástica Hereditária , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Mutação , Ligação Proteica , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
20.
Elife ; 112022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913118

RESUMO

Mechanotransduction at cell-cell adhesions is crucial for the structural integrity, organization, and morphogenesis of epithelia. At cell-cell junctions, ternary E-cadherin/ß-catenin/αE-catenin complexes sense and transmit mechanical load by binding to F-actin. The interaction with F-actin, described as a two-state catch bond, is weak in solution but is strengthened by applied force due to force-dependent transitions between weak and strong actin-binding states. Here, we provide direct evidence from optical trapping experiments that the catch bond property principally resides in the αE-catenin actin-binding domain (ABD). Consistent with our previously proposed model, the deletion of the first helix of the five-helix ABD bundle enables stable interactions with F-actin under minimal load that are well described by a single-state slip bond, even when αE-catenin is complexed with ß-catenin and E-cadherin. Our data argue for a conserved catch bond mechanism for adhesion proteins with structurally similar ABDs. We also demonstrate that a stably bound ABD strengthens load-dependent binding interactions between a neighboring complex and F-actin, but the presence of the other αE-catenin domains weakens this effect. These results provide mechanistic insight to the cooperative binding of the cadherin-catenin complex to F-actin, which regulate dynamic cytoskeletal linkages in epithelial tissues.


Assuntos
Actinas , Cateninas , Actinas/metabolismo , Caderinas/metabolismo , Cateninas/metabolismo , Adesão Celular/fisiologia , Mecanotransdução Celular , Ligação Proteica/fisiologia , alfa Catenina/química , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA