Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
Oral Dis ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177011

RESUMO

OBJECTIVE: Estimate the impact of Adiponectin receptors agonist (AdipoRon) on dental implant osseointegration in alveolar bone and explore the possible mechanism between saliva microbiota and AdipoRon in diabetic mice. MATERIALS AND METHODS: Sixty C57BL/6 mice (male, 8 weeks old) were divided randomly into four groups according to different doses of AdipoRon: normoglycemic control group; DM control group; DM with a low dose of AdipoRon (5 mg/kg/day); and DM with a high dose of AdipoRon (50 mg/kg/day). Then, dental implants were placed in the palatal root socket in the first molar extraction mouse model. Micro-computed tomography, histology examination, immunohistochemical staining, and oral microbiota were explored to evaluate implant osseointegration. RESULTS: AdipoRon treatment at 50 mg/kg markedly promoted dental implant osseointegration in diabetic mice, but AdipoRon treatment at 5 mg/kg was not effective. Moreover, distinct differences in the oral microbiota composition were shown between the diabetic mice and diabetic mice treated with AdipoRon at 50 mg/kg. CONCLUSION: AdipoRon treatment at 50 mg/kg in diabetic mice could significantly increase dental implant osseointegration. The salivary microbiota might participate in the accelerated osseointegration progress of dental implants in AdipoRon treatment.

2.
Ann Biomed Eng ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120770

RESUMO

The risk of aseptic loosening in cementless hip stems can be reduced by improving osseointegration with osteoinductive coatings favoring long-term implant stability. Osseointegration is usually evaluated in vivo studies, which, however, do not reproduce the mechanically driven adaptation process. This study aims to develop an in silico model to predict implant osseointegration and the effect of induced micromotion on long-term stability, including a calibration of the material osteoinductivity with conventional in vivo studies. A Finite Element model of the tibia implanted with pins was generated, exploiting bone-to-implant contact measures of cylindrical titanium alloys implanted in rabbits' tibiae. The evolution of the contact status between bone and implant was modeled using a finite state machine, which updated the contact state at each iteration based on relative micromotion, shear and tensile stresses, and bone-to-implant distance. The model was calibrated with in vivo data by identifying the maximum bridgeable gap. Afterward, a push-out test was simulated to predict the axial load that caused the macroscopic mobilization of the pin. The bone-implant bridgeable gap ranged between 50 µm and 80 µm. Predicted push-out strength ranged from 19 N to 21 N (5.4 MPa-3.4 MPa) depending on final bone-to-implant contact. Push-out strength agrees with experimental measurements from a previous animal study (4 ± 1 MPa), carried out using the same implant material, coated, or uncoated. This method can partially replace in vivo studies and predict the long-term stability of cementless hip stems.

3.
Int J Oral Maxillofac Implants ; : 1-21, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121361

RESUMO

Purpose: The osseointegration in dental implants is greatly affected by various surface properties, such as chemistry, texture, and overall cleanliness. This study aimed to investigate the impact of mineral oil lubricants used in rotary instruments on osseointegration within rabbit tibiae, with a specific focus on potential contamination from dental handpices. Materials and Methods: Twelve New Zealand rabbits were included in this study, each receiving two implants in each tibia, resulting in a total of 48 implants across the study. Groups were organized based on the time until euthanasia and the degree of implant contamination. Three contamination levels were defined: the first group received implants without any lubricant in the handpiece (control group); the second group received implants with handpices managed as recommended; the third group had implants placed using fixtures pre-soaked in lubricant. These groups were further subdivided based on euthanization periods of two and four weeks. We measured and analyzed both the removal torque and the bone-implant contact. Results: We observed a non-significant inverse correlation between the severity of fixture contamination and removal torque. However, there was a significant reduction in bone-implant contact associated with higher contamination levels, particularly after four weeks. Conclusions: Even brief exposure to lubricants from handpieces can jeopardize the osseointegration of implants in bone. Therefore, it is imperative to implement thorough procedures for lubricant removal post-application and to employ precise cleaning and suction during implant drilling and placement to minimize residual oil on the implant surface.

4.
SICOT J ; 10: 28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145666

RESUMO

BACKGROUND: Hydroxyapatite (HA) coated femoral stems were introduced to enhance the biological fixation at the implant-bone interface, aiming to increase the longevity and survival of the prostheses. We aimed to assess the long-term outcomes of an HA ceramic (HAC) coated stem in primary total hip arthroplasty (THA), assess the stem survival, and clinically evaluate the patients using patient-reported outcome measures (PROMs) and radiological evaluation of stem osseointegration. PATIENTS AND METHODS: This was a prospective evaluation of a retrospective cohort of 385 patients (442 hips) who underwent primary THA between June 2008 and December 2018. The mean age was 63.83 years (range, 30-82 years). During the follow-up duration, 23 patients died, and 36 patients (38 hips) were lost to follow-up. Prospective data collected for 326 patients (381 hips) was used to evaluate stem survival with the Kaplan-Meier method using aseptic loosening or any revision as the endpoint. Clinical evaluation was done using the EuroQol five-dimension (EQ-5D) scoring system and PROMs using the Oxford Hip Score (OHS) and Merle D'Aubigne Postel (MDP) score. Radiological assessments were performed using the Engh radiological criteria for stem osteointegration. RESULTS: The mean follow-up duration was 9.39 years (range, 4-14.5 years). The survival of the HAC-coated femoral stem was 100% (95% confidence interval [CI], 96.7-100%) at 14 years with aseptic loosening as the endpoint, and 98.9% (CI, 96.7-100%) at 14 years with stem revision for any reason as the endpoint. The mean OHS was 44.5 (range, 30-48), and the mean MDP score was 15.87 (range, 10-18). Radiological evaluations showed full osseointegration of all stems. CONCLUSION: This HAC-coated femoral stem has shown excellent survivorship, functional outcomes, and full osseointegration at the final follow-up.

5.
F1000Res ; 13: 281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149510

RESUMO

Introduction: Osseointegration stands as a pivotal concept within the realm of dental implants, signifying the intricate process through which a dental implant integrates with the adjoining bone tissue. Graphene oxide (GO) has been shown to promote osseointegration, the process by which the implant fuses with the surrounding bone. The objective of this study was to assess the osseointegrative and antimicrobial properties of GO nano coated dental implants. Methods: A systematic search was conducted using electronic databases (e.g., PubMed, Scopus, Web of Science) to identify relevant studies published. Inclusion criteria encompassed studies that evaluated the effects of GO nano coating on osseointegrative and antimicrobial characteristics of dental implants. Studies not written in English and published before 2012 were excluded. Results: The initial search yielded a total of 127 potential studies, of which six met the inclusion criteria and five were included in the review. These studies provided data on GO nano coated dental implants and their osseointegrative and antimicrobial properties. All the included studies showed moderate risk of bias. None of the studies provided information related to sample size calculation or sampling technique. Discussion: The findings from the included studies demonstrated that GO nano coating had a positive impact on osseointegrative properties of dental implants. Enhanced bone-implant contact and increased bone density were observed in animals and humans receiving GO nano coated implants. Furthermore, the antimicrobial properties of GO nano coating were found to inhibit bacterial colonization and biofilm formation on the implant surface, reducing the risk of implant-associated infections. Conclusion: The findings indicate that GO nano coating holds promise in enhancing the success rate and longevity of dental implants. However, more studies with larger sample sizes, are needed to further strengthen the evidence and determine the long-term effects of GO nano coated dental implants.


Assuntos
Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Implantes Dentários , Grafite , Osseointegração , Grafite/química , Grafite/farmacologia , Implantes Dentários/microbiologia , Osseointegração/efeitos dos fármacos , Humanos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Anti-Infecciosos/farmacologia , Animais , Nanoestruturas
6.
Mater Today Bio ; 27: 101150, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104902

RESUMO

Patients with osteoporosis face challenges such as decreased bone density, a sparse trabecular structure, weakened osteogenic ability, and impaired angiogenesis, leading to poor osseointegration and implant failure. Surface modification of implants with biologically active molecules possessing various functions is an effective strategy to improve osseointegration. In this study, we constructed a simple multifunctional coating interface that significantly improves osseointegration. In brief, a multifunctional coating interface was constructed by coupling the Rgd adhesive peptide, Ogp osteogenic peptide, and Ang angiogenic peptide to Lys6 (k6), which self-assembled layer by layer with TA to form the (TA-Rgd@ogp@ang)n composite membrane. This study characterized the surface morphology and biomechanical properties of the coating under both gas and liquid phases and monitored the deposition process and reaction rate of the two peptides with TA using a quartz crystal microbalance. Moreover, (TA-Rgd@ogp@ang)n exhibited a triple synergistic effect on cell migration and adhesion, osteogenic differentiation, and angiogenesis. It also ameliorated the high ROS environment characteristic of osteoporosis pathology, promoted angiogenic bone defect regeneration in osteoporosis, thereby avoiding poor osseointegration. This work provides a new approach for the prevention of implant failure in pathological environments by constructing multifunctional coatings on implants, with tremendous potential applications in the fields of orthopedics and dentistry.

7.
Biomater Adv ; 164: 213970, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39106539

RESUMO

Orthopedic implant failures, primarily attributed to aseptic loosening and implant site infections, pose significant challenges to patient recovery and lead to revision surgeries. Combining piezoelectric materials with ionic liquids as interfaces for orthopedic implants presents an innovative approach to addressing both issues simultaneously. In this study, films of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) incorporated with 1-ethyl-3-methylimidazolium hydrogen sulfate ([Emim][HSO4]) ionic liquid were developed. These films exhibited strong antibacterial properties, effectively reducing biofilm formation, thereby addressing implant-related infections. Furthermore, stem cell-based differentiation assays exposed the potential of the composite materials to induce osteogenesis. Interestingly, our findings also revealed the upregulation of calcium channel expression as a result of electromechanical stimulation, pointing to a mechanistic basis for the observed biological effects. This work highlights the potential of piezoelectric materials with ionic liquids to improve the longevity and biocompatibility of orthopedic implants. Offering dual-functionality for infection prevention and bone integration, these advancements hold significant potential for advancing orthopedic implant technologies and improving patient outcomes.

8.
Adv Healthc Mater ; : e2401556, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138979

RESUMO

The application of titanium (Ti) implants for patients with diabetes mellitus (DM) is still facing a significant challenge due to obstacles such as hyperglycemia, reactive oxygen species (ROS), and chronic inflammation, which hinders osseointegration. To address this issue, a Ti implant with dual functions of regulating polarization of macrophages and facilitating osseointergration is developed via hydrothermal reaction and hydrogel coating. The reactive oxygen species (ROS) and glucose (Glu) responsive hydrogel coating can locally deliver adenosine (ADO) in the early stage of implantation. The controlled release of ADO regulated the phenotype of macrophages, restored oxidative balance, and enhanced mitochondrial function during the early stages of implantation. Subsequently, strontium (Sr) ions will be released to promote osteogenic differentiation and proliferation of mesenchymal stem cells (MSCs), as the hydrogel coating degraded. It eventually leads to bone reconstruction during the late stages, aligning with the biological cascade of bone healing. The modified Ti implants showed effective osteogenesis for bone defects in DM patients, shedding light on the design and biological mechanisms of surface modification. This research offers promising potential for improving the treatment of bone-related complications in diabetic patients.

9.
Biotechnol J ; 19(8): e2400288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115337

RESUMO

Bone tissue engineering offers a promising alternative to stimulate the regeneration of damaged tissue, overcoming the limitations of conventional autografts and allografts. Recently, titanium alloy (Ti) implants have garnered significant attention for treating critical-sized bone defects, especially with the advancement of 3D printing technology. Although Ti alloys have impressive versatility, their lack of cellular adhesion, osteogenic and antibacterial properties are significant factors that contribute to their failure. Hence, to overcome these obstacles, this study aimed to incorporate osteoinductive and antibacterial cue-loaded hydrogels into 3D-printed Ti (3D-Ti) scaffolds. 3D-Ti scaffolds were synthesized using the direct metal laser sintering method and loaded with a gelatin (Gel) hydrogel containing strontium-doped silver nanoparticles (Sr-Ag NPs). Compared with Ag NPs, Sr-doped Ag NPs increased the expression of Runx2 mRNA, which is a key bone transcription factor. We subjected the bioactive 3D-hybrid scaffolds (3D-Ti/Gel/Sr-Ag NPs) to physicochemical and material characterization, followed by cytocompatibility and osteogenic evaluation. The microporous and macroporous topographies of the scaffolds with Sr-Ag NPs showed increased Runx2 expression and matrix mineralization, with potent antibacterial properties. Therefore, the 3D-Ti scaffolds incorporated with Sr-Ag NP-loaded Gel hydrogels favored osteoblast differentiation and antibacterial activity, indicating their potential for orthopedic applications.


Assuntos
Antibacterianos , Diferenciação Celular , Gelatina , Hidrogéis , Nanopartículas Metálicas , Osteoblastos , Osteogênese , Impressão Tridimensional , Prata , Estrôncio , Engenharia Tecidual , Alicerces Teciduais , Titânio , Prata/química , Prata/farmacologia , Gelatina/química , Estrôncio/química , Estrôncio/farmacologia , Titânio/química , Titânio/farmacologia , Engenharia Tecidual/métodos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Antibacterianos/química , Antibacterianos/farmacologia , Alicerces Teciduais/química , Hidrogéis/química , Hidrogéis/farmacologia , Nanopartículas Metálicas/química , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Osso e Ossos/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-39126510

RESUMO

INTRODUCTION: Bone anchored hearing implants (BAHI) are considered for conductive and mixed hearing loss, relying on osseointegration of a titanium implant. Limitations relate to constant skin contact, with resultant percutaneous infections and granulation. This study investigates whether patient characteristics and implant-specifications contribute to BAHIs' skin complications in a cohort with a uniform surgical approach. METHODS: A 10 year (2014-2024) retrospective cohort study was conducted on BAHI procedures that were undertaken using a tissue-preserving 'punch' technique. Data on patient demographics, co-morbidities, implant type, surgical approach, and complications were collected. Poisson regression analysis was used to identify predictors of complications. RESULTS: A total of 53 patients undergoing 55 BAHI surgeries by three ENT consultants were included. Factors that greatly increased implant-related percutaneous infections included the Cochlear™ BIA400 implant when compared to the Ponto™ BHX implant (twofold, CI 2.03-2.16), abutment sizes ≤ 10 mm (fourfold, CI 3.99-4.12) and male gender (9%, CI 1.07-1.12). Granulation episodes were affected by cardiovascular disease (CVD) status (1.5-fold, CI 0.26-0.78), BIA400 implant (threefold, CI 8.8.-9.2) and abutment sizes ≤ 10 mm (fourfold, CI 3.6-3.73). Revision surgery episodes increased with diabetic status (1.2-fold, CI 0.06-0.37) and abutment sizes ≤ 10 mm (threefold, 3.303-3.304). CONCLUSIONS: Larger cohort studies are required to confirm findings, particularly for implant and abutment size contributions. However, the findings suggest that using a larger abutment size when skin thickness meassuremets are borderline, improved hygiene education in male patients, pre-operative optimisation of CVD and diabetes, and adjusted patient follow-up based on risk stratification of the contributing factors to complication rates could reduce complication rates.

11.
Front Bioeng Biotechnol ; 12: 1395715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113790

RESUMO

Introduction: Electrical stimulation has been used as a promising approach in bone repair for several decades. However, the therapeutic use is hampered by inconsistent results due to a lack of standardized application protocols. Recently, electrical stimulation has been considered for the improvement of the osseointegration of dental and endoprosthetic implants. Methods: In a pilot study, the suitability of a specifically developed device for electrical stimulation in situ was assessed. Here, the impact of alternating electric fields on implant osseointegration was tested in a gap model using New Zealand White Rabbits. Stimulation parameters were transmitted to the device via a radio transceiver, thus allowing for real-time monitoring and, if required, variations of stimulation parameters. The effect of electrical stimulation on implant osseointegration was quantified by the bone-implant contact (BIC) assessed by histomorphometric (2D) and µCT (3D) analysis. Results: Direct stimulation with an alternating electric potential of 150 mV and 20 Hz for three times a day (45 min per unit) resulted in improved osseointegration of the triangular titanium implants in the tibiae of the rabbits. The ratio of bone area in histomorphometry (2D analysis) and bone volume (3D analysis) around the implant were significantly increased after stimulation compared to the untreated controls at sacrifice 84 days after implantation. Conclusion: The developed experimental design of an electrical stimulation system, which was directly located in the defect zone of rabbit tibiae, provided feedback regarding the integrity of the stimulation device throughout an experiment and would allow variations in the stimulation parameters in future studies. Within this study, electrical stimulation resulted in enhanced implant osseointegration. However, direct electrical stimulation of bone tissue requires the definition of dose-response curves and optimal duration of treatment, which should be the subject of subsequent studies.

12.
Adv Healthc Mater ; : e2401974, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132780

RESUMO

The poor implant-osseointegration under diabetic condition remains a challenge to be addressed urgently. Studies have confirmed that the diabetic pathological microenvironment is accompanied by excessive oxidative stress, imbalanced immune homeostasis, and persistent chronic inflammation, which seriously impairs the osteogenic process. Herein, a multifunctional bioactive interface with both anti-oxidative stress and immunomodulatory properties is constructed on titanium implants. Briefly, manganese dioxide nanosheets are coated onto mesoporous polydopamine nanoparticles loaded with carbon monoxide gas precursor, namely MnO2-CO@MPDA NPs, and then they are integrated on the titanium implant to obtain MCM-Ti. In the simulated diabetic microenvironment, under the action of MnO2 nanoenzymes, MCM-Ti can effectively eliminate intracellular reactive oxygen species while alleviating hypoxic state. Interestingly, the microenvironment mediates the responsive release of CO gas, which effectively drives macrophages toward M2 polarization, thereby ameliorating inflammatory response. The potential mechanism is that CO gas up-regulates the expression of heme oxygenase-1, further activating the Notch/Hes1/Stat3 signaling pathway. Furthermore, the conditioned medium derived from macrophages on MCM-Ti surface significantly enhances the osteogenic differentiation of BMSCs. In a type 2 diabetic rat model, MCM-Ti implant effectively alleviates the accompanying inflammation and enhances the osseointegration through the synergistic effects of resisting oxidative stress and remodeling immune homeostasis.

13.
Int J Oral Maxillofac Implants ; : 1-28, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121371

RESUMO

Aim: To assess the roughness and hydrophilicity of nine types of dental implant surfaces, while also examining the presence of contaminants carbon and oxygen on these surfaces. Furthermore, the study investigated potential correlations between these characteristics across the analyzed surfaces. Materials and Methods: The surfaces analyzed were as follows: MI: machined (turned), Implacil implant; TOI: blasted with titanium oxide, Implacil implant; TOAEI: blasted with titanium oxide and acid-etched, Implacil implant; ZAED: blasted with zirconia and acid-etched, DSP implant; CPD: coated with calcium phosphate, DSP implant; XD: subjected to an experimental treatment (patent pending), DSP implant; DAEHAS: double acid-etched and activated with hydroxyapatite nano-crystals, SIN implant; DAES: double acid-etched, SIN implant; and AMP: untreated surface of the Plenum implant, produced by additive manufacturing. Four and five disc-shaped specimens were used in the hydrophilicity and roughness assessments, respectively. Roughness was evaluated by optical profilometry and scanning electron microscopy; hydrophilicity was determined using the sessile-drop technique; and the chemical analysis was performed using X-ray photoelectron spectroscopy. The Kruskal- Wallis, Mann-Whitney, and Spearman correlation tests were employed to analyze the data (p < 0.10). Results: Significant differences were observed among the analyzed surfaces in terms of both roughness and hydrophilicity (p < 0.001). The surface exhibiting the highest roughness was AMP, whereas the greatest hydrophilicity was exhibited by CPD. Correlations between roughness and hydrophobicity were observed for MI (r = 0.936, p = 0.009), ZAED (r = 0.957, p = 0.004), and DAES (r = 0.964, p = 0.005). The carbon concentration observed on the CPD surface was lower than that observed on the other surfaces, whereas the oxygen concentrations were similar. No correlations were observed between the presence of contaminants and the roughness or hydrophilicity characteristics. Conclusion: Roughness and hydrophilicity values exhibited considerable variation among the tested surfaces. Aside from the CPD surface, comparable concentrations of carbon and oxygen were detected. Although correlations between roughness and hydrophilicity were observed only for the ZAED, DAES, and MI surfaces, these correlations were inadequate to establish a causal relationship between the two surface characteristics.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39121390

RESUMO

Implant-associated infections and delayed osseointegration are major challenges for the clinical success of titanium implants. To enhance antibacterial effects and promote early osseointegration, we developed a synergistic photothermal (PTT)/photodynamic (PDT) therapy strategy based on near-infrared (NIR) responsive biomimetic micro/nano titanate/TiO2-X heterostructure coatings (KMNW and NaMNS) in situ constructed on the surface of titanium implants. Specifically, KMNW and NaMNS significantly enhanced photothermal conversion capabilities, achieving localized high temperatures of 48-51 °C and promoting substantial amounts of reactive oxygen species production under 808 nm irradiation. In vitro antibacterial experiments demonstrated that KMNW achieved the highest antibacterial rates against Staphylococcus aureus and Escherichia coli, at 98.78 and 98.33% respectively. Moreover, by mimicking the three-dimensional fibrous network of the extracellular matrix during bone healing, both KMNW and NaMNS markedly promoted the proliferation and osteogenic differentiation of osteoblasts. In vivo implantation studies further confirmed these findings, with KMNW and NaMNS exhibiting superior antibacterial performance under NIR irradiation─94.45% for KMNW and 92.66% for NaMNS. Moreover, KMNW and NaMNS also significantly promoted new bone formation and improved osseointegration in vivo. This study presents a promising PTT/PDT therapeutic strategy for dentistry and orthopedics by employing NIR-responsive biomimetic coatings to combat implant-associated infection and accelerate osseointegration.

15.
Arthroplast Today ; 28: 101463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100422

RESUMO

Background: Some amputees with transfemoral osseointegration (TFOI) have ipsilateral hip arthritis which can be addressed with total hip arthroplasty (THA). This study reported the medium-term outcomes of THA in association with TFOI (THA + TFOI). Methods: Retrospective review was performed for eight patients with THA + TFOI performed at least 2 years prior. Primary outcomes include complications prompting surgical intervention. Secondary outcomes include changes in mobility (K-level, 6-minute walk test [6MWT], timed up and go) and patient-reported measures (hip pain, daily prosthesis wear hours, Questionnaire for Persons with a Transfemoral Amputation, and Short Form 36 [SF36]). Results: One patient died after 11 months (cancer); he was included to maximally report complications but excluded from mobility and reported outcomes. Three patients required subsequent surgeries: Two had skin refashioning, and the other underwent hip debridement of the replaced joint with subsequent removal of the TFOI. No perioperative complications, fractures, or arthroplasty explantations occurred. All patients reported complete hip pain relief. Of 6 patients reporting prosthesis wear time, 2 (33%) wore their prosthetic leg at least 4 hours daily before, vs all (100%) who did afterward (P = .061). K-levels improved in all responding patients. All 5 wheelchair-bound patients achieved and maintained ambulation. The Questionnaire for Persons with a Transfemoral Amputation and Short Form 36 did not significantly change. Conclusions: THA + TFOI does not appear to pose an inevitable risk for prosthetic hip infection and may improve mobility and enhance quality of life (QOL) for transfemoral amputees with concurrent arthritic hip pain who are dissatisfied with their outcome following traditional socket prosthesis rehabilitation.

16.
J Adv Prosthodont ; 16(3): 189-199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957293

RESUMO

PURPOSE: This study was conducted to evaluate the effects of plasma treatment of sandblasted and acid-etched (SLA) titanium implants on surface cleansing and osseointegration in a beagle model. MATERIALS AND METHODS: For morphological analysis and XPS analysis, scanning electron microscope and x-ray photoelectron spectroscopy were used to analyze the surface topography and chemical compositions of implant before and after plasma treatment. For this animal experiment, twelve SLA titanium implants were divided into two groups: a control group (untreated implants) and a plasma group (implants treated with plasma). Each group was randomly located in the mandibular bone of the beagle dog (n = 6). After 8 weeks, the beagle dogs were sacrificed, and volumetric analysis and histometric analysis were performed within the region of interest. RESULTS: In morphological analysis, plasma treatment did not alter the implant surface topography or cause any physical damage. In XPS analysis, the atomic percentage of carbon at the inspection point before the plasma treatment was 34.09%. After the plasma treatment, it was reduced to 18.74%, indicating a 45% reduction in carbon. In volumetric analysis and histometric analysis, the plasma group exhibited relatively higher mean values for new bone volume (NBV), bone to implant contact (BIC), and inter-thread bone density (ITBD) compared to the control group. However, there was no significant difference between the two groups (P > .05). CONCLUSION: Within the limits of this study, plasma treatment effectively eliminated hydrocarbons without changing the implant surface.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38963167

RESUMO

OBJECTIVE: The aim of this study was to explore the effect of depression and selective serotonin reuptake inhibitors on implant osseointegration and bone healing. METHODS: Forty-eight 6- to 8-week-old SPF Sprague-Dawley male rats were randomly divided into four groups: the Control group, the Fluoxetine group, the Depression group and the De&Flu group. The rats in the Depression group and the De&Flu group were subjected to a depression modelling process, and the rats in the Control group and the Fluoxetine group were raised normally. Then, a titanium implant was placed in the right tibia of each rat. In the Fluoxetine group and De&Flu group, fluoxetine was injected subcutaneously daily, while subcutaneously injecting physiological saline in the Control group and Depression group. Collecting serum from the rats used for ELISA. The surgical area was cut for microcomputed tomography and histology observation. RESULTS: After 12 weeks, bone mineral density was lower in the De&Flu group than in the Control group, Depression group and Fluoxetine group. Bone mineral density was also lower in the Depression group and the Fluoxetine group than in the Control group. The percentage of bone-implant contact (BIC%) in De&Flu rats was lower than in the Control, Depression and Fluoxetine groups. The BIC% in the Depression group and the Fluoxetine group was lower than in the Control group. CONCLUSIONS: Depression and fluoxetine negatively affect bone density and implant osseointegration independently, and this damaging effect is exacerbated when both factors are present. The mechanism may be related to the dysregulation of the hypothalamic-pituitary-adrenal axis and inflammation in the body.

18.
Int J Implant Dent ; 10(1): 35, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967690

RESUMO

Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.


Assuntos
Implantes Dentários , Osseointegração , Osteoblastos , Propriedades de Superfície , Osteoblastos/fisiologia , Osteoblastos/citologia , Humanos , Diferenciação Celular , Proliferação de Células , Titânio/química , Osteogênese/fisiologia
19.
Biomed Rep ; 21(2): 122, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38978538

RESUMO

Osseointegration implant (OI) surgery is the latest rehabilitation technology for amputees, where a bone-anchored implant obviates the limitations of traditional socket prostheses. The bone mineral density (BMD) in the periprosthetic and other anatomical regions can be used to assess bone remodelling following OI surgery. Currently, limited studies have used BMD measurements in reporting post-operative OI outcomes and the association between the maintenance of BMD and implant efficacy has remained elusive. This review captured and analysed all studies that have reported the BMD as an objective outcome measure in patients with trans-femoral or trans-tibial OI. The PubMed, Medline, Scopus and Web of Science databases were searched using the terms 'amputation', 'osseointegration' and 'bone mineral density'. A total of 6 studies involving human participants were included for analysis. All studies used dual X-ray absorptiometry and/or X-rays for measuring BMD. Rehabilitation of trans-femoral or trans-tibial amputation using OI may help restore healthy BMD by enabling physiological bone loading. However, there is a low correlation between the BMD around the OI and the success of OI surgery or the risk of periprosthetic fractures. This review summarises the current evidence on BMD assessment in OI for lower limb amputee rehabilitation. Despite the great variability in the results, the available evidence suggests that OI may help restore BMD following surgery. The limited evidence calls for further investigation, as well as the development of a standard BMD measurement protocol.

20.
Front Bioeng Biotechnol ; 12: 1371693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978718

RESUMO

Introduction: Titanium-based implants can be used to fill voids in bone reconstruction surgery. Through additive manufacturing (AM), it is possible to produce titanium implants with osteoconductive properties such as high porosity and low stiffness. AM facilitates a level of design flexibility and personalization that is not feasible with traditional techniques. Methods: In this study, osseointegration into titanium alloy (Ti-6Al-4V) lattices was investigated for 12 weeks post-implantation using a novel bicortical load-bearing ovine model. The objective was to assess the safety and efficacy of AM-fabricated implants using two lattice structures of contrasting stiffness spanning the full width of the femoral condyle. Results: This was achieved by evaluating implant osseointegration and bone-implant contact properties by histomorphometry, scoring local implant tissue responses via histopathology, and micro-computed tomography reconstruction. Discussion: We found that Ti-6Al-4V implants facilitated widespread and extensive osseointegration, with bone maturation ongoing at the conclusion of the trial period. Following the implantation period, no adverse clinical indications that could be directly ascribed to the presence of the implanted device were identified, as determined by macroscopic and microscopic observation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA