Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 916
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000233

RESUMO

The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER) chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3. In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Hepatócitos , Isomerases de Dissulfetos de Proteínas , Transdução de Sinais , Tunicamicina , Chaperona BiP do Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Hepatócitos/metabolismo , Animais , Tunicamicina/farmacologia , Retículo Endoplasmático/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Linhagem Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Tapsigargina/farmacologia , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Sobrevivência Celular/efeitos dos fármacos
2.
Adv Sci (Weinh) ; : e2402578, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005234

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. Significantly activated uridine nucleotide and fatty acid metabolism in HCC cells promote malignant proliferation and immune evasion. Herein, it is demonstrated that the tripartite motif 65 (TRIM65) E3 ubiquitin-protein ligase, O-GlcNAcylated via O-GlcNAcylation transferase, is highly expressed in HCC and facilitated metabolic remodeling to promote the accumulation of products related to uracil metabolism and palmitic acid, driving the progression of HCC. Mechanistically, it is showed that TRIM65 mediates ubiquitylation at the K44 residue of neurofibromatosis type 2 (NF2), the key protein upstream of classical Hippo signaling. Accelerated NF2 degradation inhibits yes-associated protein 1 phosphorylation, inducing aberrant activation of related metabolic enzyme transcription, and orchestrating metabolic and immune advantages. In conclusion, these results reveal a critical role for the TRIM family molecule TRIM65 in supporting HCC cell survival and highlight the therapeutic potential of targeting its E3 ligase activity to alter the regulation of proteasomal degradation.

3.
Foods ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998529

RESUMO

Dry bean (Phaseolus vulgaris L.) is a crop of high nutritional interest widespread throughout the world. This research had two objectives. On the one hand, the development and validation of an analytical method to quantify fatty acids in dry beans based on the extraction and derivatization in a single step and later quantification by gas chromatography. On the other, its application to characterize the fatty acid content in a diversity panel consisting of 172 lines. The method was successfully validated in terms of accuracy, precision and robustness. Among the 14 fatty acids that constitute the fatty acid profile of dry bean, the most quantitatively important were linolenic acid, the major fatty acid in all cases, with an average value of 6.7 mg/g, followed by linoleic acid (3.9 mg/g), palmitic acid (2.9 mg/g) and oleic acid (1.5 mg/g). The concentrations of fatty acids in dry bean were influenced by the gene pool, with the Mesoamerican gene pool showing a higher content of palmitic, stearic, linoleic and linolenic acids and the Andean gene pool a higher level of cis-vaccenic acid. Also, the expression of fatty acid content showed high heritability. The information generated constitutes a robust database of interest in food technology, nutrition and breeding programs.

4.
Genes Cells ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965717

RESUMO

The brain utilizes glucose as a primary energy substrate but also fatty acids for the ß-oxidation in mitochondria. The ß-oxidation is reported to occur mainly in astrocytes, but its capacity and efficacy against different fatty acids remain unknown. Here, we show the fatty acid preference for the ß-oxidation in mitochondria of murine cultured astrocytes. Fatty acid oxidation assay using an extracellular flux analyzer showed that saturated or monosaturated fatty acids, palmitic acid and oleic acid, are preferred substrates over polyunsaturated fatty acids like arachidonic acid and docosahexaenoic acid. We also report that fatty acid binding proteins expressed in the astrocytes contribute less to fatty acid transport to mitochondria for ß-oxidation. Our results could give insight into understanding energy metabolism through fatty acid consumption in the brain.

5.
Free Radic Biol Med ; 222: 424-436, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960008

RESUMO

Abnormal polarization of adipose tissue macrophages (ATMs) results in low-grade systemic inflammation and insulin resistance (IR), potentially contributing to the development of diabetes. However, the underlying mechanisms that regulate the polarization of ATMs associated with gestational diabetes mellitus (GDM) remain unclear. Thus, we aimed to determine the effects of abnormal fatty acids on macrophage polarization and development of insulin resistance in GDM. Levels of fatty acids and inflammation were assessed in the serum samples and adipose tissues of patients with GDM. An in vitro cell model treated with palmitic acid was established, and the mechanisms of palmitic acid in regulating macrophage polarization was clarified. The effects of excessive palmitic acid on the regulation of histone methylations and IR were also explored in the high-fat diet induced GDM mice model. We found that pregnancies with GDM were associated with increased levels of serum fatty acids, and inflammation and IR in adipose tissues. Increased palmitic acid could induce mitochondrial dysfunction and excessive ROS levels in macrophages, leading to abnormal cytoplasmic and nuclear metabolism of succinate and α-ketoglutarate (αKG). Specifically, a decreased nuclear αKG/succinate ratio could attenuate the enrichment of H3K27me3 at the promoters of pro-inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, leading to cytokine secretion. Importantly, GDM mice treated with GSK-J4, an inhibitor of histone lysine demethylase, were protected from abnormal pro-inflammatory macrophage polarization and excessive production of pro-inflammatory cytokines. Our findings highlight the importance of the metabolism of αKG and succinate as transcriptional modulators in regulating the polarization of ATMs and the insulin sensitivity of adipose tissue, ensuring a normal pregnancy. This novel insight sheds new light on gestational fatty acid metabolism and epigenetic alterations associated with GDM.

6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 349-358, 2024 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38970508

RESUMO

OBJECTIVES: Obesity related glomerulopathy (ORG) is induced by obesity, but the pathogenesis remains unclear. This study aims to investigate the expression of early growth response protein 3 (EGR3) in the renal cortex tissues of ORG patients and high-fat diet-induced obese mice, and to further explore the molecular mechanism of EGR3 in inhibiting palmitic acid (PA) induced human podocyte inflammatory damage. METHODS: Renal cortex tissues were collected from ORG patients (n=6) who have been excluded from kidney damage caused by other diseases and confirmed by histopathology, and from obese mice induced by high-fat diet (n=10). Human and mouse podocytes were intervened with 150 µmol/L PA for 48 hours. EGR3 was overexpressed or silenced in human podocytes. Enzyme linked immunosorbent assay (ELISA) was used to detcet the levels of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). Real-time RT-PCR was used to detect the mRNA expressions of EGR3, podocytes molecular markers nephrosis 1 (NPHS1), nephrosis 2 (NPHS2), podocalyxin (PODXL), and podoplanin (PDPN). RNA-seq was performed to detect differentially expressed genes (DEGs) after human podocytes overexpressing EGR3 and treated with 150 µmol/L PA compared with the control group. Co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS) was used to detect potential interacting proteins of EGR3 and the intersected with the RNA-seq results. Co-IP confirmed the interaction between EGR3 and protein arginine methyltransferases 1 (PRMT1), after silencing EGR3 and PRMT1 inhibitor intervention, the secretion of IL-6 and IL-1ß in PA-induced podocytes was detected. Western blotting was used to detect the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) after overexpression or silencing of EGR3. RESULTS: EGR3 was significantly upregulated in renal cortex tissues of ORG patients and high-fat diet-induced obese mice (both P<0.01). In addition, after treating with 150 µmol/L PA for 48 hours, the expression of EGR3 in human and mouse podocytes was significantly upregulated (both P<0.05). Overexpression or silencing of EGR3 in human podocytes inhibited or promoted the secretion of IL-6 and IL-1ß in the cell culture supernatant after PA intervention, respectively, and upregulated or downregulated the expression of NPHS1, PODXL, NPHS2,and PDPN (all P<0.05). RNA-seq showed a total of 988 DEGs, and Co-IP+LC-MS identified a total of 238 proteins that may interact with EGR3. Co-IP confirmed that PRMT1 was an interacting protein with EGR3. Furthermore, PRMT1 inhibitors could partially reduce PA-induced IL-6 and IL-1ß secretion after EGR3 silencing in human podocytes (both P<0.05). Overexpression or silencing of EGR3 negatively regulated the expression of PRMT1 and p-STAT3. CONCLUSIONS: EGR3 may reduce ORG podocyte inflammatory damage by inhibiting the PRMT1/p-STAT3 pathway.


Assuntos
Proteína 3 de Resposta de Crescimento Precoce , Obesidade , Podócitos , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Fator de Transcrição STAT3 , Podócitos/metabolismo , Podócitos/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Animais , Humanos , Camundongos , Fator de Transcrição STAT3/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Nefropatias/metabolismo , Nefropatias/etiologia , Nefropatias/patologia , Ácido Palmítico/farmacologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Camundongos Obesos , Masculino , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-6/metabolismo , Interleucina-6/genética , Córtex Renal/metabolismo , Córtex Renal/patologia
7.
Exp Cell Res ; 440(2): 114134, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901790

RESUMO

Individuals with type 2 diabetes mellitus frequently display heightened levels of palmitic acid (PA) in their serum, which may lead to ß-cell damage. The involvement of ferroptosis, a form of oxidative cell death in lipotoxic ß-cell injury remains uncertain. Here, we have shown that PA induces intracellular lipid peroxidation, increases intracellular Fe2+ content and decreases intracellular glutathione peroxidase 4 (GPX4) expression. Furthermore, PA causes distinct changes in pancreatic islets and INS-1 cells, such as mitochondrial atrophy and increased membrane density. Furthermore, the presence of the ferroptosis inhibitor has a significant mitigating effect on PA-induced ß-cell damage. Mechanistically, PA increased ceramide content and c-Jun N-terminal kinase (JNK) phosphorylation. The ceramide synthase inhibitor effectively attenuated PA-induced ß-cell damage and GPX4/Fe2+ abnormalities, while inhibiting JNK phosphorylation. Additionally, the JNK inhibitor SP600125 improved PA-induced cell damage. In conclusion, by promoting ceramide synthesis, PA inhibited GPX4 expression and increased intracellular Fe2+ to induce ß-cell ferroptosis. Moreover, JNK may be a downstream mechanism of ceramide-triggered lipotoxic ferroptosis in ß-cells.


Assuntos
Ceramidas , Ferroptose , Células Secretoras de Insulina , Ácido Palmítico , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ceramidas/metabolismo , Ácido Palmítico/farmacologia , Animais , Transdução de Sinais/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ratos , Peroxidação de Lipídeos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ferro/metabolismo
8.
Sci Rep ; 14(1): 13116, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849435

RESUMO

Stearoyl-CoA desaturase 1 (SCD1) is an attractive target for cancer therapy. However, the clinical efficacy of SCD1 inhibitor monotherapy is limited. There is thus a need to elucidate the mechanisms of resistance to SCD1 inhibition and develop new therapeutic strategies for combination therapy. In this study, we investigated the molecular mechanisms by which cancer cells acquire resistance to endoplasmic reticulum (ER) stress-dependent cancer cell death induced by SCD1 inhibition. SCD1 inhibitor-sensitive and -resistant cancer cells were treated with SCD1 inhibitors in vitro, and SCD1 inhibitor-sensitive cancer cells accumulated palmitic acid and underwent ER stress response-induced cell death. Conversely, SCD1-resistant cancer cells did not undergo ER stress response-induced cell death because fatty acid desaturase 2 (FADS2) eliminated the accumulation of palmitic acid. Furthermore, genetic depletion using siRNA showed that FADS2 is a key determinant of sensitivity/resistance of cancer cells to SCD1 inhibitor. A549 cells, an SCD1 inhibitor-resistant cancer cell line, underwent ER stress-dependent cancer cell death upon dual inhibition of SCD1 and FADS2. Thus, combination therapy with SCD1 inhibition and FADS2 inhibition is potentially a new cancer therapeutic strategy targeting fatty acid metabolism.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático , Ácidos Graxos Dessaturases , Estearoil-CoA Dessaturase , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/antagonistas & inibidores , Humanos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Linhagem Celular Tumoral , Células A549 , Ácido Palmítico/farmacologia , Morte Celular/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/tratamento farmacológico
9.
In Silico Pharmacol ; 12(1): 53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860144

RESUMO

Plants provide compounds that can be used to treat diseases, and in silico methods help to expedite drug discovery while reducing costs. This study explored the phytochemical profile of methanol extract of O. alismoides using GC-MS to identify potential bioactive compounds. Autodock 4.2.6. was employed for molecular docking evaluation of the efficacy of these identified compounds against Estrogen Receptor Alpha (ERα), Human Epidermal Growth Factor Receptor 2 (HER2), and Epidermal Growth Factor Receptor (EGFR), proteins. Additionally, the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of the compounds were predicted using the SwissADME online tool. The preliminary phytochemical analysis revealed the presence of alkaloids, carbohydrates, glycosides, and steroids. During the GC-MS analysis, seven compounds were identified, and drug-likeness prediction of these compounds showed good pharmacokinetic properties having high gastrointestinal absorption, and orally bioavailable. The molecular docking studies exhibited promising binding affinities of bioactive compounds against all target proteins. Specifically, the compounds Tricyclo[5.2.1.0(2,6)]decan-10-ol and 2,2,6-Trichloro-7-oxabicyclo[4.1.0]heptane-1-carboxamide demonstrated the highest binding affinities with the ERα (-6.3 and - 6.0 k/cal), HER2 (-5.6 and - 6.1 k/cal), and EGFR (-5.4 and - 5.4 k/cal), respectively. These findings suggest the potential of O. alismoides as a source for developing new cancer therapeutics. The study highlights the effectiveness of in silico approaches for accelerating drug discovery from natural sources and paves the way for further exploration of these promising compounds. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00227-y.

10.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928494

RESUMO

Pancreatic ductal adenocarcinoma (PDAC)'s resistance to therapies is mainly attributed to pancreatic cancer stem cells (PCSCs). Mitochondria-impairing agents can be used to hamper PCSC propagation and reduce PDAC progression. Therefore, to develop an efficient vector for delivering drugs to the mitochondria, we synthesized tris(3,5-dimethylphenyl)phosphonium-conjugated palmitic acid. Triphenylphosphonium (TPP) is a lipophilic cationic moiety that promotes the accumulation of conjugated agents in the mitochondrion. Palmitic acid (PA), the most common saturated fatty acid, has pro-apoptotic activity in different types of cancer cells. TPP-PA was prepared by the reaction of 16-bromopalmitic acid with TPP, and its structure was characterized by 1H and 13C NMR and HRMS. We compared the proteomes of TPP-PA-treated and untreated PDAC cells and PCSCs, identifying dysregulated proteins and pathways. Furthermore, assessments of mitochondrial membrane potential, intracellular ROS, cardiolipin content and lipid peroxidation, ER stress, and autophagy markers provided information on the mechanism of action of TPP-PA. The findings showed that TPP-PA reduces PDAC cell proliferation through mitochondrial disruption that leads to increased ROS, activation of ER stress, and autophagy. Hence, TPP-PA might offer a new approach for eliminating both the primary population of cancer cells and PCSCs, which highlights the promise of TPP-derived compounds as anticancer agents for PDAC.


Assuntos
Mitocôndrias , Compostos Organofosforados , Ácido Palmítico , Neoplasias Pancreáticas , Proteômica , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Ácido Palmítico/farmacologia , Ácido Palmítico/química , Compostos Organofosforados/farmacologia , Compostos Organofosforados/química , Proteômica/métodos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proteoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Autofagia/efeitos dos fármacos
11.
Nutrients ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892622

RESUMO

Breast milk (BM) plays a crucial role in providing essential fatty acids (FA) and energy for the growing infant. When the mother's own BM is not available, nutritional recommendations suggest donor milk (DM) in clinical and home practices. BM was collected from a variety of donor mothers in different lactation stages. Holder pasteurization (HoP) eliminates potential contaminants to ensure safety. FA content of BM samples from the Breast Milk Collection Center of Pécs, Hungary, were analyzed before and after HoP. HoP decreases the level of C6:0, C8:0, C14:1n-5c, C18:1n-9c, C18:3n-6c, C18:3n-3c, and C20:4n-6c in BM, while C14:0, C16:0, C18:1n-9t, C22:0, C22:1n-9c, C24:0, C24:1n-9c, and C22:6n-3c were found in elevated concentration after HoP. We did not detect time-dependent concentration changes in FAs in the first year of lactation. BM produced for girl infants contains higher C20:2n-6c levels. In the BM of mothers who delivered via cesarean section, C12:0, C15:0, C16:0, C17:0, C18:0, C18:1n-9t, C22:1n-9c levels were higher, while C18:2n-6c, C22:0, C24:0, and C22:6n-3c concentrations were lower compared to mothers who gave birth spontaneously. FAs in BM are constant during the first year of lactation. Although HoP modifies the concentration of different FAs, pasteurized DM provides essential FAs to the developing infant. Current data providing information about the FA profile of BM gives origination to supplementation guidelines.


Assuntos
Ácidos Graxos , Leite Humano , Pasteurização , Humanos , Leite Humano/química , Feminino , Pasteurização/métodos , Ácidos Graxos/análise , Lactente , Adulto , Recém-Nascido , Fatores Sexuais , Gravidez , Lactação , Parto Obstétrico/métodos , Hungria , Bancos de Leite Humano
12.
Sci Rep ; 14(1): 14397, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909100

RESUMO

Alternative splicing plays a crucial role in increasing the diversity of mRNAs expressed in the genome. Serine/arginine-rich splicing factor 3 (SRSF3) is responsible for regulating the alternative splicing of its own mRNA and ensuring that its expression is balanced to maintain homeostasis. Moreover, the exon skipping of SRSF3 leads to the production of a truncated protein instead of a frameshift mutation that generates a premature termination codon (PTC). However, the precise regulatory mechanism involved in the splicing of SRSF3 remains unclear. In this study, we first established a platform for coexpressing full-length SRSF3 (SRSF3-FL) and SRSF3-PTC and further identified a specific antibody against the SRSF3-FL and truncated SRSF3 (SRSF3-TR) proteins. Next, we found that exogenously overexpressing SRSF3-FL or SRSF3-PTC failed to reverse the effects of digoxin, caffeine, or both in combination on this molecule and its targets. Endoplasmic reticulum-related pathways, transcription factors, and chemicals such as palmitic acid and phosphate were found to be involved in the regulation of SRSF3 expression. The downregulation of SRSF3-FL by palmitic acid and phosphate was mediated via different regulatory mechanisms in HeLa cells. In summary, we provide new insights into the altered expression of the SRSF3-FL and SRSF3-TR proteins for the identification of the functions of SRSF3 in cells.


Assuntos
Processamento Alternativo , Fatores de Processamento de Serina-Arginina , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Humanos , Células HeLa , Estabilidade Proteica , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Nutrients ; 16(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931313

RESUMO

Obesity is increasingly prevalent worldwide and is linked to metabolic diseases, such as insulin resistance (IR) and type 2 diabetes mellitus (T2DM), due to excessive free fatty acids (FFAs). Although lifestyle changes are effective, they often prove to be insufficient as initial treatments for obesity. Additionally, while surgical and pharmacological interventions are available, they are not entirely safe or effective. Recently, interest has grown in utilizing food waste and plant-derived phenolic compounds for their health benefits, presenting a promising avenue for managing obesity and its related disorders. Indeed, many studies have examined the potential inhibitory effects of the natural extract on adipocyte differentiation and lipid accumulation. This study focused on the evaluation of the effects of standardized extracts obtained from red oranges and olive leaf waste on 3T3-L1 murine pre-adipocyte and adipocyte functionality. Red orange extract (ROE) and olive leaf extract (OLE), alone and in combination, were tested to assess their anti-obesity and anti-inflammatory effects, as well as their potential therapeutic benefits. Three in vitro models were established to investigate the effects of the extracts on (I) adipocyte differentiation; (II) mature and hypertrophic adipocytes challenged with palmitic acid (PA) and erastin (ER), respectively; and (III) erastin-induced cytotoxicity on pre-adipocytes.


Assuntos
Células 3T3-L1 , Adipócitos , Olea , Extratos Vegetais , Folhas de Planta , Animais , Olea/química , Adipócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Camundongos , Folhas de Planta/química , Diferenciação Celular/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Adipogenia/efeitos dos fármacos , Obesidade/tratamento farmacológico
14.
Chin J Nat Med ; 22(6): 554-567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38906602

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is characterized by significant treatment resistance. Palmitic acid (PA) has shown promising antitumor properties. This study aims to elucidate the molecular mechanisms by which PA influences DLBCL progression. We quantified the expression levels of microRNAs (miRNAs), Forkhead box protein O1 (FOXO1), and DNA methyltransferase 3A (DNMT3A) in both untreated and PA-treated DLBCL tumors and cell lines. Assessments were made of cell viability, apoptosis, and autophagy-related protein expression following PA administration. Interaction analyses among miR-429, DNMT3A, and FOXO1 were conducted using luciferase reporter assays and methylation-specific (MSP) Polymerase chain reaction (PCR). After transfecting the miR-429 inhibitor, negative control (NC) inhibitor, shRNA against DNMT3A (sh-DNMT3A), shRNA negative control (sh-NC), overexpression vector for DNMT3A (oe-DNMT3A), or overexpression negative control (oe-NC), we evaluated the effects of miR-429 and DNMT3A on cell viability, mortality, and autophagy-related protein expression in PA-treated DLBCL cell lines. The efficacy of PA was also tested in vivo using DLBCL tumor-bearing mouse models. MiR-429 and FOXO1 expression levels were downregulated, whereas DNMT3A was upregulated in DLBCL compared to the control group. PA treatment was associated with enhanced autophagy, mediated by the upregulation of miR-429 and downregulation of DNMT3A. The luciferase reporter assay and MSP confirmed that miR-429 directly inhibits DNMT3A, thereby reducing FOXO1 methylation. Subsequent experiments demonstrated that PA promotes autophagy and inhibits DLBCL progression by upregulating miR-429 and modulating the DNMT3A/FOXO1 axis. In vivo PA significantly reduced the growth of xenografted tumors through its regulatory impact on the miR-429/DNMT3A/FOXO1 axis. Palmitic acid may modulate autophagy and inhibit DLBCL progression by targeting the miR-429/DNMT3A/FOXO1 signaling pathway, suggesting a novel therapeutic target for DLBCL management.


Assuntos
DNA Metiltransferase 3A , Proteína Forkhead Box O1 , Linfoma Difuso de Grandes Células B , MicroRNAs , Ácido Palmítico , MicroRNAs/genética , MicroRNAs/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Humanos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Animais , Camundongos , Ácido Palmítico/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Camundongos Nus , Masculino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Camundongos Endogâmicos BALB C
15.
Artigo em Inglês | MEDLINE | ID: mdl-38905036

RESUMO

OBJECTIVE: Endothelial cells play a critical role in maintaining vascular function and kinetic homeostasis, but excessive accumulation of palmitic acid (PA) may lead to endoplasmic reticulum stress and trigger endothelial cell dysfunction. Baicalin (BCL), a natural plant extract, has received widespread attention for its biological activities in anti-inflammation and anti-oxidative stress. However, the mechanism of BCL on PA-induced endothelial cell dysfunction is unclear. Therefore, the aim of this study was to investigate whether BCL could inhibit PA-induced endoplasmic reticulum stress and thus attenuate endothelial cell dysfunction. METHODS: Human umbilical vein endothelial cells (HUVECs) were divided into Control, PA, PA + BCL-10 µM, PA + BCL-20 µM, and PA + BCL-50 µM groups. The PA group was treated with PA (200 µM), while the PA + BCL groups were co-treated with different concentrations of BCL (10 µM, 20 µM, 50 µM) for 24 hours. Cell viability was detected by MTT. Cell migration ability was determined by Transwell assay, apoptosis level by flow cytometry, and tube formation ability by tube formation assay. Finally, the levels of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and angiogenesis-related proteins (VEGFA and FGF2) were detected by western blot, MMP-9, as well as the protein levels of endoplasmic reticulum stress biomarkers (GRP78, CHOP, PERK, and ATF4). RESULTS: The results at the cellular level showed that cell viability, migration ability and tube formation ability of PA-induced HUVECs were significantly reduced, while apoptosis level was significantly increased. However, administration of different concentrations of BCL significantly enhanced PA-induced cell viability, migration ability and tube formation ability of HUVECs while inhibiting apoptosis. The results of protein levels showed that the protein levels of Bax and cleaved caspase-3 were observably up-regulated in the cells of the PA group, while the protein level of Bcl-2 was significantly down-regulated; compared with the PA group, the protein levels of Bax and cleaved caspase-3 were much lower and the Bcl-2 protein level was much higher in the PA + BCL group. Additionally, the protein levels of VEGFA, FGF2 and MMP-9 were raised and those of GRP78, CHOP, PERK and ATF4 were lowered in the PA + BCL group of cells in a concentration-dependent manner. CONCLUSION: BCL significantly attenuates PA-induced endothelial cell dysfunction by inhibiting endoplasmic reticulum stress.

16.
Biochem Biophys Res Commun ; 722: 150168, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38797156

RESUMO

Human serum albumin (HSA) is the most abundant plasma protein of the circulatory system. It is a multidomain, multifunctional protein that, combining diverse affinities and wide specificity, binds, stores, and transports a variety of biological compounds, pharmacores, and fatty acids. HSA is finding increasing uses in drug-delivery due to its ability to carry functionalized ligands and prodrugs. All this raises the question of competition for binding sites occupancy in case of multiple ligands, which in turn influences the protein structure/dynamic/function relationship and also has an impact on the biomedical applications. In this work, the effects of interactive binding of palmitic acid (PA), warfarin (War) and ibuprofen (Ibu) on the thermal stability of HSA were studied using DSC, ATR-FTIR, and EPR. PA is a high-affinity physiological ligand, while the two drugs are widely used for their anticoagulant (War) and anti-inflammatory (Ibu) efficacy, and are exogenous compounds that accommodate in the deputed drug site DS1 and DS2, respectively overlapping with some of the fatty acid binding sites. The results indicate that HSA acquires the highest thermal stability when it is fully saturated with PA. The binding of this physiological ligand does not hamper the binding of War or Ibu to the native state of the protein. In addition, the three ligands bind simultaneously, suggesting a synergic cooperative influence due to allosteric effects. The increased thermal stability subsequent to binary and multiple ligands binding moderates protein aggregation propensity and restricts protein dynamics. The biophysics findings provide interesting features about protein stability, aggregation, and dynamics in interaction with multiple ligands and are relevant in drug-delivery.


Assuntos
Ibuprofeno , Albumina Sérica Humana , Varfarina , Humanos , Sítios de Ligação , Ligação Competitiva , Ibuprofeno/química , Ibuprofeno/metabolismo , Ligantes , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Temperatura , Varfarina/química , Varfarina/metabolismo , Varfarina/farmacologia
17.
Cells ; 13(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786033

RESUMO

Research on retinoid-based cancer prevention, spurred by the effects of vitamin A deficiency on gastric cancer and subsequent clinical studies on digestive tract cancer, unveils novel avenues for chemoprevention. Acyclic retinoids like 4,5-didehydrogeranylgeranoic acid (4,5-didehydroGGA) have emerged as potent agents against hepatocellular carcinoma (HCC), distinct from natural retinoids such as all-trans retinoic acid (ATRA). Mechanistic studies reveal GGA's unique induction of pyroptosis, a rapid cell death pathway, in HCC cells. GGA triggers mitochondrial superoxide hyperproduction and ER stress responses through Toll-like receptor 4 (TLR4) signaling and modulates autophagy, ultimately activating pyroptotic cell death in HCC cells. Unlike ATRA-induced apoptosis, GGA and palmitic acid (PA) induce pyroptosis, underscoring their distinct mechanisms. While all three fatty acids evoke mitochondrial dysfunction and ER stress responses, GGA and PA inhibit autophagy, leading to incomplete autophagic responses and pyroptosis, whereas ATRA promotes autophagic flux. In vivo experiments demonstrate GGA's potential as an anti-oncometabolite, inducing cell death selectively in tumor cells and thus suppressing liver cancer development. This review provides a comprehensive overview of the molecular mechanisms underlying GGA's anti-HCC effects and underscores its promising role in cancer prevention, highlighting its importance in HCC prevention.


Assuntos
Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Ácido Palmítico , Piroptose , Tretinoína , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Diterpenos/farmacologia , Ácido Palmítico/farmacologia , Piroptose/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Tretinoína/farmacologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos
18.
Nutr Rev ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38699959

RESUMO

Nutritional status disorders have the most significant impact on the development of cardiovascular and oncologic diseases; therefore, the interest in the study of palm oil as among the leading components of nutrition has been increasing. The data examined in this review were sourced from the Scopus, SCIE (Web of Science), PubMed and PubMed Central, MEDLINE, CAPlus/SciFinder, and Embase databases; experts in the field; bibliographies; and abstracts from review analyses from the past 15 years. This review summarizes recent research data focusing on the quantitative and qualitative composition of nutrition of modern humans; concepts of the relationship between high-fat diets and disorders of insulin functioning and transport and metabolism of fatty acids; analyses of data regarding the palmitic acid (16:0) to oleic acid (18:1) ratio; and the effect of diet based on palm oil consumption on cardiovascular risk factors and lipid and lipoprotein levels. Several studies suggest a potential vector contributing to the transmission of maternal, high-fat-diet-induced, addictive-like behaviors and obesogenic phenotypes across generations. The relationship between cholesterol accumulation in lysosomes that may lead to lysosome dysfunction and inhibition of the autophagy process is analyzed, as is the progression of inflammatory diseases, atherosclerosis, nonalcoholic liver inflammation, and obesity with associated complications. Data are discussed from analyses of differences between rodent models and human population studies in the investigated different effects of palm oil consumption as a high-fat diet component. A conclusion is reached that the results cannot be generalized in human population studies because no similar effects were observed. Although there are numerous published reports, more studies are necessary to elucidate the complex regulatory mechanisms in digestive and nutrition processes, because there are great differences in lipoprotein profiles between rodents and humans, which makes it difficult to reproduce the pathology of many diseases caused by different types of the high-fat diet.

19.
Endocrinol Metab (Seoul) ; 39(3): 511-520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752267

RESUMO

BACKGRUOUND: This study investigates the impact of fluctuating lipid levels on endothelial dysfunction. METHODS: Human aortic and umbilical vein endothelial cells were cultured under varying palmitic acid (PA) concentrations: 0, 50, and 100 µM, and in a variability group alternating between 0 and 100 µM PA every 8 hours for 48 hours. In the lipid variability group, cells were exposed to 100 µM PA during the final 8 hours before analysis. We assessed inflammation using real-time polymerase chain reaction, Western blot, and cytokine enzyme-linked immunosorbent assay (ELISA); reactive oxygen species (ROS) levels with dichlorofluorescin diacetate assay; mitochondrial function through oxygen consumption rates via XF24 flux analyzer; and endothelial cell functionality via wound healing and cell adhesion assays. Cell viability was evaluated using the MTT assay. RESULTS: Variable PA levels significantly upregulated inflammatory genes and adhesion molecules (Il6, Mcp1, Icam, Vcam, E-selectin, iNos) at both transcriptomic and protein levels in human endothelial cells. Oscillating lipid levels reduced basal respiration, adenosine triphosphate synthesis, and maximal respiration, indicating mitochondrial dysfunction. This lipid variability also elevated ROS levels, contributing to a chronic inflammatory state. Functionally, these changes impaired cell migration and increased monocyte adhesion, and induced endothelial apoptosis, evidenced by reduced cell viability, increased BAX, and decreased BCL2 expression. CONCLUSION: Lipid variability induce endothelial dysfunction by elevating inflammation and oxidative stress, providing mechanistic insights into how lipid variability increases cardiovascular risk.


Assuntos
Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana , Inflamação , Estresse Oxidativo , Ácido Palmítico , Espécies Reativas de Oxigênio , Humanos , Estresse Oxidativo/efeitos dos fármacos , Inflamação/metabolismo , Ácido Palmítico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Aorta/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos
20.
Hum Reprod ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725195

RESUMO

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...