Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
1.
Small ; : e2404865, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984733

RESUMO

Aqueous zinc metal batteries are regarded as a promising energy storage solution for a green and sustainable society in the future. However, the practical application of metallic zinc anode is plagued by the thermodynamic instability issue of water molecules in conventional electrolytes, which leads to severe dendrite growth and side reactions. In this work, an ultra-thin and high areal capacity metallic zinc anode is achieved by utilizing crystalline water with a stable stoichiometric ratio. Unlike conventional electrolytes, the designed electrolyte can effectively suppress the reactivity of water molecules and diminish the detrimental corrosion on the metallic zinc anode, while preserving the inherent advantages of water molecules, including great kinetic performance in electrolytes and H+ capacity contribution in cathodes. Based on the comprehensive performance of the designed electrolyte, the 10 µm Zn||10 µm Zn symmetric cell stably ran for 1000 h at the current density of 1 mA cm-2, and the areal capacity of 1 mAh cm-2, whose depth-of-discharge is over 17.1%. The electrochemical performance of the 10 µm Zn||9.3 mg cm-2 polyaniline (PANI) full-cell demonstrates the feasibility of the designed electrolyte. This work provides a crucial understanding of balancing activity of water molecules in aqueous zinc metal batteries.

2.
Environ Sci Technol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037290

RESUMO

The phenomenon of methane oxidation linked to perchlorate reduction has been reported in multiple studies; yet, the underlying microbial mechanisms remain unclear. Here, we enriched suspended cultures by performing methane-driven perchlorate reduction under oxygen-limiting conditions in a membrane bioreactor (MBR). Batch test results proved that perchlorate reduction was coupled to methane oxidation, in which acetate was predicted as the potential intermediate and oxygen played an essential role in activating methane. By combining DNA-based stable isotope probing incubation and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA, pcrA, and narG), we found that synergistic interactions between aerobic methanotrophs (Methylococcus and Methylocystis) and perchlorate-reducing bacteria (PRB; Denitratisoma and Dechloromonas) played active roles in mediating methane-driven perchlorate reduction. This partnership was further demonstrated by coculture experiments in which the aerobic methanotroph could produce acetate to support PRB to complete perchlorate reduction. Our findings advance the understanding of the methane-driven perchlorate reduction process and have implications for similar microbial consortia linking methane and chlorine biogeochemical cycles in natural environments.

3.
J Mol Model ; 30(8): 254, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970669

RESUMO

CONTEXT: Ammonium perchlorate (NH4ClO4, abbreviated as AP) has the advantages of high oxygen content, high density, and good compatibility, and has significant application prospects in the field of energetic materials. The crystal morphology has a great influence on the properties and sensibility of energetic materials, and a single experimental means is difficult in exploring the crystals; therefore, the crystal morphology of AP is investigated using molecular dynamics simulation complemented with experiments, to theoretically analyze the differences in AP crystal habit and the interactions between solvent molecules and the main growing crystal surfaces of AP. The results show that AP crystal is mainly composed of five independent crystal surfaces (0 0 1), (0 1 0), (1 0 0), (1 0 1), and (1 0 -1) in vacuum using the BFDH laws, with (0 0 1) surface being the main growth crystal surface. In contrast, in H2O solvent, the (1 0 1) and (1 0 -1) surfaces disappear, and the AP mainly consists of (0 0 1), (0 1 0), and (1 0 0) surfaces with a rectangular shape. The crystal morphology obtained from theoretical prediction is in good agreement with that obtained from experimental culture. This paper can provide a new idea for the cultivation and preparation of AP large crystals, and promote the application of AP crystals in energetic materials. METHODS: The crystal morphologies of AP in vacuum and H2O solvent under Dreiding force field were predicted based on attachment energy model by using molecular dynamics method in Materials Studio 2019 software. The entire molecular dynamics simulation was carried out under the NTV system, the temperature control method was selected as Anderson, and the system temperature was set to 298 K. The simulation time was set to 40 ps, the step size was set to 1 fs, and the data were outputted every 5000 steps.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38986013

RESUMO

CONTEXT: Clinical course and need for long-term L-thyroxine (LT4) therapy of congenital hypothyroidism (CH) with gland in situ (GIS) remain unclear. OBJECTIVE: To describe the clinical history of CH with GIS and evaluate the proportion of patients who can suspend therapy during follow-up. DESIGN AND SETTING: Retrospective evaluation of patients followed at referral regional center for CH of Pisa. PATIENTS: 77 patients with confirmed primary CH and GIS after positive neonatal screening were included. All children started LT4 at CH confirm. INTERVENTIONS: At 3 years of age, 55 children underwent a clinical re-evaluation after withdrawal of therapy with hormonal examinations, imaging of the thyroid gland with ultrasonography and 123-iodine with perchlorate discharge test. Subsequent periodic controls of thyroid function were executed and, when possible, a new attempt to stop LT4 was performed. Adequate follow-up data (at least 6 months after treatment suspension trial) were available for 49 patients. RESULTS: Among the 55 patients who were reassessed, 18 (32.7%) were euthyroid. Considering subsequent follow-up, 49% of patients were no longer treated and 51% were taking therapy. No differences in neonatal parameters were observed between the two groups; LT4 dose before the last trial off medication was higher in permanent CH (p 0.016). CONCLUSION: Monitoring of thyroid function in children with CH and GIS is necessary to evaluate the need for substitution and avoid overtreatment. Even if therapy can be suspended, patients need to be monitored because apparently normal thyroid function may decline several months after withdrawal of LT4.

5.
Food Chem Toxicol ; 191: 114876, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033870

RESUMO

Perchlorate, an aqueous-soluble compound resistant to degradation, is mainly used in the synthesis of pyrotechnics, herbicides, and other products. It serves as a pivotal component in the production of fireworks, rocket fuel, and explosives. Perchlorate was recognized as a pollutant owing to the potential toxic risk to thyroid function, which could pose a potential threat to the nervous system of infants and pregnant women. Some study had found that perchlorate existed in food, water and air. This study aimed to investigate the levels of perchlorate in six types of foods (n = 570) from South China, and evaluate potential exposure risks for residents. Vegetables were found to have the highest median levels of foods, attributed to elevated water content in leafy vegetables and facile solubility of perchlorate in water. The relatively low levels of perchlorate in food compared to other studies could attribute to the fact that the period of food we purchased in this study was during the wet season while the contaminants, such as perchlorate, were diluted. The maximum hazard quotient (HQ) values for all residents consuming different foods and water were all higher than 1 This suggested that there is a potential health risk of perchlorate to residents in South China. Those may be attributed to the high levels of perchlorate in some individual samples of meat and eggs. However, the 95th percentile of HQ values in all residents was less than 1, indicating that there is no potential health risk of perchlorate to most residents in South China.

6.
Environ Sci Technol ; 58(24): 10644-10651, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832916

RESUMO

Microbial reduction of perchlorate (ClO4-) is emerging as a cost-effective strategy for groundwater remediation. However, the effectiveness of perchlorate reduction can be suppressed by the common co-contamination of nitrate (NO3-). We propose a means to overcome the limitation of ClO4- reduction: depositing palladium nanoparticles (Pd0NPs) within the matrix of a hydrogenotrophic biofilm. Two H2-based membrane biofilm reactors (MBfRs) were operated in parallel in long-term continuous and batch modes: one system had only a biofilm (bio-MBfR), while the other incorporated biogenic Pd0NPs in the biofilm matrix (bioPd-MBfR). For long-term co-reduction, bioPd-MBfR had a distinct advantage of oxyanion reduction fluxes, and it particularly alleviated the competitive advantage of NO3- reduction over ClO4- reduction. Batch tests also demonstrated that bioPd-MBfR gave more rapid reduction rates for ClO4- and ClO3- compared to those of bio-MBfR. Both biofilm communities were dominated by bacteria known to be perchlorate and nitrate reducers. Functional-gene abundances reflecting the intracellular electron flow from H2 to NADH to the reductases were supplanted by extracellular electron flow with the addition of Pd0NPs.


Assuntos
Biofilmes , Nitratos , Paládio , Percloratos , Paládio/química , Nitratos/metabolismo , Percloratos/metabolismo , Oxirredução , Elétrons , Água Subterrânea/química
7.
J Hazard Mater ; 474: 134805, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843632

RESUMO

Recognizing the extent of perchlorate pollution in the environment is critical to preventing and mitigating potential perchlorate harm to human health. The presence and distribution of perchlorate in Chinese environmental matrixes (water, atmosphere, and soil) were systematically investigated and comprehensively analyzed, and cumulative perchlorate exposure at the regional level was assessed using a combined aggregate exposure pathway method. The results showed that perchlorate is ubiquitous in the environment of China with significant regional differences. The total perchlorate exposure levels in each region of China ranked as South China > Southwest China > East China > North China > Northeast China > Northwest China. Although the average exposure dose of 0.588 (95 %CI: 0.142 -1.914) µg/kg bw/day being lower than the reference dose of 0.70 µg/kg bw/day, it was observed that the intake of perchlorate in some regions exceed this reference dose. Oral ingestion was the primary route of perchlorate exposure (89.97-96.57 % of the total intake), followed by dermal contact (3.21-9.16 %) and respiratory inhalation. Food and drinking water were the main sources of total perchlorate intake, contributing 52.54 % and 31.12 % respectively, with the latter contributing significantly more in southern China than in northern China. In addition, perchlorate exposure from dust sources was also noteworthy, as its contribution was as high as 23.18 % in some regions. These findings will improve understanding of the perchlorate risk and serve as a critical reference for policymakers in crafting improved environmental management and risk mitigation strategies in China and other nations.


Assuntos
Exposição Ambiental , Percloratos , Percloratos/análise , Percloratos/toxicidade , China , Exposição Ambiental/análise , Humanos , Monitoramento Ambiental , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Água Potável/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-38924295

RESUMO

Phytoremediation is a technology that uses plants to break down, remove, and immobilize contaminants in surface water, shallow groundwater, and sediment to achieve cost savings compared with conventional treatments. This study describes a marshy land on an explosives manufacturing site in India that consistently reported elevated concentrations of nitrates, nitrites, ammonia, perchlorate, and lead (contaminants of potential concern-CoPC). The study also illustrates the potential for addressing the human health and environmental risks associated with the explosives manufacturing industrsy in India using innovative, sustainable, and carbon-neutral techniques. This work focuses on reconstructed marshy lands, desedimentation, microwatershed management, and phytoremediation using Phragmites and Vetiveria species (also known as vetiver) to reduce contaminants in surface water and groundwater, improve stormwater management and carbon capture, and increase natural capital like biodiversity. The results obtained during the trial indicate that the selected indigenous species are effective and can be used to remediate sediment and shallow groundwater for many CoPC in tropical climates. Integr Environ Assess Manag 2024;00:1-16. © 2024 SETAC.

9.
Small ; : e2400712, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770994

RESUMO

As one of the main components of solid propellant, ammonium perchlorate (AP) shows slow sluggish decomposition kinetics with unconcentrated heat release. To achieve efficient catalytical decomposition, it is a significant challenge to design reasonable catalyst structure and explore the interaction between catalyst and AP. Herein, a series of porous carbon supported spinel-typed homogeneous heterometallic composites CuxCo3-xO4/C via pyrolysis of MOF-74-Co doped Cu. On basis of precise electronic-structure-tuning through modulating Cu/Co ratio in MOF-74, Cu0.15Co2.85O4/C with 5% Cu-doping featuring oxygen vacancy concentration of 26.25% exhibits the decrease to 261.5 °C with heat release up to 1222.1 J g-1 (456.9 °C and 669.2 J g-1 for pure AP). The detail process of AP accelerated decomposition is approved by TG-DSC-FTIR-MS technique. Density functional theory calculation revealed that in the Cu0.15Co2.85O4/C, the distinctive ability for NH3 catalyzed oxidation assisted with absorption performance of active porous C boosts accelerating AP decomposition. The findings would provide an insight for perceiving and understanding AP catalytic decomposition.

10.
Environ Sci Pollut Res Int ; 31(23): 34459-34472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703319

RESUMO

Associations of perchlorate, thiocyanate, and nitrate exposures with bone mineral density (BMD) in adults have not previously been studied. This study aimed to estimate the associations of individual and concurrent exposure of the three chemicals with adult BMD. Based on National Health and Nutrition Examination Survey (NHANES, 2011-2018), 1618 non-pregnant adults (age ≥ 20 years and 47.0% female) were included in this study. Survey-weighted linear regression models were used to estimate individual urinary perchlorate, thiocyanate, and nitrate concentrations with lumbar spine BMD and total BMD in adults. Then, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were conducted to evaluate associations of co-occurrence of the three chemicals with adult BMD. In all participants, nitrate exposure was inversely associated with lumbar spine BMD (ß = - 0.054, 95%CI: - 0.097, - 0.010). In stratification analyses, significant inverse associations were observed in female and participants older than 40 years old. In WQS regressions, significant negative associations of the weighted sum of the three chemicals with total and lumbar spine BMD (ß = - 0.014, 95%CI: - 0.021, - 0.007; ß = - 0.011, 95%CI: - 0.019, - 0.004, respectively) were found, and the dominant contributor was nitrate. In the BKMR models, non-linear dose-response associations of nitrate exposure with lumbar spine and total BMD were observed. These findings suggested that environmental perchlorate, thiocyanate, and nitrate exposure may reduce adult BMD and nitrate is the main contributor.


Assuntos
Densidade Óssea , Exposição Ambiental , Nitratos , Percloratos , Tiocianatos , Humanos , Tiocianatos/urina , Percloratos/urina , Estudos Transversais , Adulto , Feminino , Nitratos/análise , Masculino , Densidade Óssea/efeitos dos fármacos , Pessoa de Meia-Idade , Inquéritos Nutricionais , Estados Unidos , Adulto Jovem
11.
Extremophiles ; 28(2): 25, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664270

RESUMO

We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.


Assuntos
Clima Desértico , Ambientes Extremos , Oxirredução , Percloratos , Percloratos/metabolismo , Metagenoma , Microbiota
12.
J Appl Toxicol ; 44(8): 1184-1197, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38639310

RESUMO

A modified amphibian metamorphosis assay was performed in which Nieuwkoop and Faber (NF) stage 47 Xenopus laevis larvae were exposed to different concentrations of either perchlorate (ClO4 -) or nitrate (NO3 -) for 32 days. Larvae were exposed to 0.0 (control), 5, 25, 125, 625, and 3125 µg/L ClO4 -, or 0 (control), 23, 71, 217, 660, and 2000 mg/L NO3 -. The primary endpoints were survival, hind limb length (HLL), forelimb emergence and development, developmental stage (including time to NF stage 62 [MT62]), thyroid histopathology, wet weight, and snout-vent length (SVL). Developmental delay as evidenced by altered stage distribution and increased MT62, a higher degree of thyroid follicular cell hypertrophy, and an increase in the prevalence of follicular cell hyperplasia was observed at concentrations ≥125 µg/L ClO4 -. The no observed effect concentration (NOEC) for developmental endpoints was 25.0 µg/L ClO4 - and the NOEC for growth endpoints was 3125 µg/L ClO4 -. Exposure to nitrate did not adversely affect MT62, but a decreasing trend in stage distribution and median developmental stage at ≥217 mg/L NO3 - was observed. No histopathologic effects associated with nitrate exposure were observed. An increasing trend in SVL-normalized HLL was observed at 2000 mg/L NO3 -. Nitrate did not alter larval growth. The NOEC for developmental endpoints was 71 mg/L NO3 -, and 2000 mg/L NO3 - for growth endpoints. The present study provided additional evidence that the effects and potency of nitrate and perchlorate on metamorphosis and growth in X. laevis are considerably different.


Assuntos
Larva , Metamorfose Biológica , Nitratos , Percloratos , Glândula Tireoide , Xenopus laevis , Animais , Percloratos/toxicidade , Metamorfose Biológica/efeitos dos fármacos , Nitratos/toxicidade , Xenopus laevis/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/crescimento & desenvolvimento , Glândula Tireoide/patologia , Relação Dose-Resposta a Droga , Poluentes Químicos da Água/toxicidade
13.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674989

RESUMO

In this research, an ammonium perchlorate/polydopamine (AP/PDA) core-shell composite was prepared in a non-aqueous solution to reduce the mechanical sensitivity of ammonium perchlorate (AP). The result showed that the AP/PDA core-shell composite could be successfully constructed in ethyl acetate solution with an AP recovery rate that reached 86%. The mechanical sensitivity of the obtained AP/PDA core-shell composite was significantly reduced with a PDA content of only 0.76%. The DSC and TG also indicated that the coating of PDA showed catalytic activity in the thermal decomposition of AP with a lower decomposition temperature and a decreased Ea value of AP. Thus, this study proposed a simple strategy for achieving a good balanced between harnessing the energy and ensuring the safety of ammonium perchlorate by significantly reducing its mechanical sensitivity by using a very low polydopamine coating layer content, and this shows great potential for the design and fabrication of insensitive energetic composites for use in propellants.

14.
Water Res ; 255: 121529, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554630

RESUMO

This study proposes an integrated approach that combines ion-exchange (IX) and electrochemical technologies to tackle problems associated with PFAS contamination. Our investigation centers on evaluating the recovery and efficiency of IX/electrochemical systems in the presence of five different salts, spanning dosages from 0.1 % to 8 %. The outcomes reveal a slight superiority for NaCl within the regeneration system, with sulfate and bicarbonate also showing comparable efficacy. Notably, the introduction of chloride ion (Cl-) into the electrochemical system results in substantial generation of undesirable chlorate (ClO3-) and perchlorate (ClO4-) by-products, accounting for ∼18 % and ∼81 % of the consumed Cl-, respectively. Several agents, including H2O2, KI, and Na2S2O3, exhibited effective mitigation of ClO3- and ClO4- formation. However, only H2O2 demonstrated a favorable influence on the degradation and defluorination of PFOA. The addition of 0.8 M H2O2 resulted in the near-complete removal of ClO3- and ClO4-, accompanied by 1.3 and 2.2-fold enhancements in the degradation and defluorination of PFOA, respectively. Furthermore, a comparative analysis of different salts in the electrochemical system reveals that Cl- and OH- ions exhibit slower performance, possibly due to competitive interactions with PFOA on the anode's reactive sites. In contrast, sulfate and bicarbonate salts consistently demonstrate robust decomposition efficiencies. Despite the notable enhancement in IX regeneration efficacy facilitated by the presence of methanol, particularly for PFAS-specific resins, this enhancement comes at the cost of reduced electrochemical decomposition of all PFAS. The average decay rate ratio of all PFAS in the presence of 50 % methanol, compared to its absence, falls within the range of 0.11-0.39. In conclusion, the use of 1 % Na2SO4 salt stands out as a favorable option for the integrated IX/electrochemical process. This choice not only eliminates the need to introduce an additional chemical (e.g., H2O2) into the wastewater stream, but also ensures both satisfactory regeneration recovery and efficiency in the decomposition process through electrochemical treatment.

15.
ACS Appl Mater Interfaces ; 16(13): 16175-16185, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509690

RESUMO

Zinc-ion batteries (ZIBs) are promising energy storage devices with safe, nonflammable electrolytes and abundant, low-cost electrode materials. Their practical applications are hampered by various water-related undesirable reactions, such as the hydrogen evolution reaction (HER), corrosion of zinc metal, and water-induced decay of cathode materials. Polymer hydrogel electrolytes were used to control these reactions. However, salt, water, and polymeric backbones intervene in polymer hydrogels, and currently, there are no systematic studies on how salt and water concentrations synergistically affect polymer hydrogels' electrochemical performance. Here, we used an in situ polymerization method to synthesize polyacrylamide (PAM) hydrogels with varied Zn(ClO4)2 (0.5 to 2.0 mol kg-1) and water (40 to 90 wt %) concentrations. Their electrochemical performances in Zn||Ti half-cells, Zn||Zn symmetrical cells, and Zn||V2O5 full cells have been comprehensively evaluated. Although the ionic conductivity of electrolytes increases with the salt concentration, a high salt concentration of 2.0 mol kg-1 with more Zn2+ solvated H2O would induce more severe HER and Zn corrosion at the electrolyte/electrode interfaces. A narrow window of the water concentration at 70-80 wt % is optimal to balance needs for achieving a high ionic conductivity and restricting water-related undesirable reactions. The chemically more active water counts roughly 64.1-73.1 wt % of the total water in electrolytes. PAM hydrogel electrolyte with 1.0 mol kg-1 Zn(ClO4)2 and 80 wt % water enables 1200 h of stable cycling in a Zn||Zn symmetric cell and 99.24% of Coulombic efficiency in a Zn||Ti half-cell. Due to the water-induced decay of V2O5, the electrolyte with 70 wt % water delivers the best performance in a Zn||V2O5 full cell, which can retain 73.7% of its initial capacity after 400 charge/discharge cycles. Our results show that achieving precise control of salt and water concentrations of hydrogel electrolytes in their optimal windows to reduce the fraction of chemically more active water while retaining high ionic conductivity is essential to enabling high-performance ZIBs.

16.
Wei Sheng Yan Jiu ; 53(1): 102-108, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38443180

RESUMO

OBJECTIVE: To establish a method for determination of perchlorate and chlorate in drinks by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) based on isotopic internal standard method. METHODS: The perchlorate and chlorate residue in liquid drinks were extracted with methanol, in solid drinks with acetic acid solution, then centrifuged. The supernatant was cleaned-up with PSA/C18 cleanup tube. The separation of perchlorate and chlorate was carried out on a Acquity CSH fluorophenyl column(100 mm×2.1mm, 1.7 µm) and the detection was performed with tandem mass spectrometry with internal standard method for quantification. RESULTS: The peak area ratio of perchlorate and chlorate had a good linear relationship with their mass concentration within their respective linear ranges, with correlation coefficients(r) greater than 0.999. The limits of detection of perchlorate and chlorate were 0.2and 1 µg/L respectively and the limits of quantification were 0.5 and 3 µg/L respectively. The mean recoveries of two compounds were from 84.0% to 105.5% with relative standard deviations from 4.2% to 17.0% and 82.7% to 112.1% with relative standard deviations from 5.5% to 18.4%(n=6), respectively. The perchlorates in 11 kinds of beverage samples were 0.53-4.12 µg/L, chlorates were 3.27-61.86 µg/L. CONCLUSION: This method is simple, sensitive, accurate and reliable, which is suitable for the determination of perchlorate and chlorate in drinks.


Assuntos
Cloratos , Percloratos , Cromatografia Líquida , Espectrometria de Massas em Tandem
17.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474632

RESUMO

We report here a series of alkyl group-modified trimesic amide molecules (TAs) with excellent anion transport activities. Among them, TA6, with the highest ion transport activity and excellent selectivity, efficiently transports anions across the membrane in the order of ClO4- > I- > NO3- > Br- > Cl-, with an EC50 value as low as 17.6 nM (0.022 mol% relative to lipid molecules) for ClO4-, which outperforms other anions by 5- to 22-folds and manifests as the best perchlorate transporter ever reported.

18.
Environ Sci Pollut Res Int ; 31(17): 25929-25939, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488916

RESUMO

In a laboratory scale, an anaerobic baffled reactor (ABR) consisting of eight compartments, the heterotrophic combining sulfur autotrophic processes under different reflux ratios were constructed to achieve effective perchlorate removal and alleviate sulfur disproportionation reaction. Perchlorate was efficiently removed with effluent perchlorate concentration below 0.5 µg/L when the influent perchlorate concentration was 1030 mg/L during stages I ~ V, indicating that heterotrophic combining sulfur autotrophic perchlorate reduction processes can effectively achieve high concentration perchlorate removal. Furthermore, the 100% reflux ratio could reduce the contact time between sulfur particles and water; thus, the sulfur disproportionation reaction was inhibited. However, the inhibition effect of reflux on sulfur disproportionation was attenuated due to dilute perchlorate concentration when a reflux ratio of 150% and 200% was implemented. Meanwhile, the content of extracellular polymeric substances (EPS) in the heterotrophic unit (36.79 ~ 45.71 mg/g VSS) was higher than that in the sulfur autotrophic unit (22.19 ~ 25.77 mg/g VSS), indicating that high concentration perchlorate stress in the heterotrophic unit promoted EPS secretion. Thereinto, the PN content of sulfur autotrophic unit decreased in stage III and stage V due to decreasing perchlorate concentration in the autotrophic unit. Meanwhile, the PS content increased with increasing reflux in the autotrophic unit, which was conducive to the formation of biofilm. Furthermore, the high-throughput sequencing result showed that Proteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes were the dominant phyla and Longilinea, Diaphorobacter, Acinetobacter, and Nitrobacter were the dominant genus in ABR, which were associated with heterotrophic or autotrophic perchlorate reduction and beneficial for effective perchlorate removal. The study indicated that reflux was a reasonable strategy for alleviating sulfur disproportionation in heterotrophic combining sulfur autotrophic perchlorate removal processes.


Assuntos
Reatores Biológicos , Percloratos , Anaerobiose , Reatores Biológicos/microbiologia , Processos Autotróficos , Processos Heterotróficos , Enxofre , Desnitrificação , Nitratos
19.
Environ Sci Pollut Res Int ; 31(6): 8510-8518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182951

RESUMO

Chlorate and perchlorate are emerging pollutants that may interfere with thyroid function. Since they are highly water soluble, chlorate and perchlorate in tea leaves cause health concerns but have scarcely been studied. In this study, chlorate and perchlorate concentrations in 216 tea samples from different regions of China were determined. Perchlorate was detected in all the samples with a median concentration of 44.1 µg kg-1, while the chlorate detection frequency was 15.7%. We observed regional differences in perchlorate contents in tea leaves, with the highest quantity found in the central region of China. Except for dark tea, the concentration of perchlorate in tea infusions decreased with the increased number of times the tea leaves were brewed. The hazard quotients (HQs) of chlorate and perchlorate in all the samples were less than 1, suggesting negligible health risks caused by these pollutants from tea consumption. To the best of our knowledge, this is the first study to investigate chlorate and perchlorate contamination in tea infusions by simulating brewing behavior.


Assuntos
Cloratos , Poluentes Ambientais , Humanos , Cloratos/análise , Percloratos/análise , Chá , China
20.
J Hazard Mater ; 466: 133595, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290332

RESUMO

In this study, an innovative approach utilizing betaine as a raw material was employed to effectively modify the surface of chitosan with quaternary ammonium groups. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometer (FTIR) characterization showed that the quaternary ammonium groups on betaine were successfully loaded on the chitosan surface. The effects of dosage, pH, initial perchlorate concentration, temperature and co-existing anions on the removal efficiency of perchlorate were investigated. The saturated adsorption capacity of CGQS was 35.41 mg/g under natural condition. The impact of initial perchlorate concentrations and column flow rates on the column adsorption experiments were investigated, as well as natural water tests. Sterilizing performance experiments of CGQS were carried out innovatively. Under the condition of initial concentration of 0.5 mg/L, 9 BV/h (bed volume per hour), the effluent natural water was up to standard (≤0.07 mg/L) with a treatment capacity of 210 BV/g, and the sterilizing rate of CGQS was up to 97.02%. The proposed adsorption mechanisms involved surface pore adsorption, electrostatic adsorption of quaternary ammonium groups, and ion exchange between chloride and perchlorate ions. The CGQS prepared in this work had great potential for treating trace perchlorate contamination in natural water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA