Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Inflammation ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954261

RESUMO

Peroxiredoxin 6 (PRDX6) has a protective effect on pulmonary epithelial cells against cigarette smoke (CS)-induced ferroptosis. This study investigates the role of PRDX6 in the development of chronic obstructive pulmonary disease (COPD) and its possibility as a target. We observed that PRDX6 was downregulated in lung tissues of COPD patients and in CS-stimulated cells. The degradation of PRDX6 could be through the lysosomal pathway. PRDX6 deficiency exacerbated pulmonary inflammation and mucus hypersecretion in vivo. Overexpression of PRDX6 in Beas-2B cells ameliorated CS-induced cell death and inflammation, suggesting its protective role against CS-induced damage. Furthermore, PRDX6 deficiency promoted ferroptosis by adding the content of iron and reactive oxygen species, while iron chelation with deferoxamine mitigated CS-induced ferroptosis, cell death, and inflammatory infiltration both in vitro and in vivo. The critical role of PRDX6 in regulating ferroptosis suggests that targeting PRDX6 or iron metabolism may represent a promising strategy for COPD treatment.

2.
Curr Genomics ; 25(1): 2-11, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38544826

RESUMO

Objectives: This research aimed to study the expression of PRDX6 mRNA in hepatocellular carcinoma (HCC) and its effect on the prognosis of HCC. Moreover, the effect of PRDX6 gene knockdown on the proliferation, migration, and invasion of HepG2 cells mediated by lentivirus was also examined. This study offers a theoretical and experimental basis for further research on the mechanism of PRDX6 in liver cancer and new methods for clinical diagnosis and treatment. Methods: RNA sequence data of 369 HCC patients were screened through the TCGA database, and the expression and clinical characteristics of PRDX6 mRNA were analyzed based on high-throughput RNA sequencing data. HepG2 cells were divided into WT, sh-NC and sh-PRDX6 groups. Real-time PCR and Western blot were used to detect the expression levels of the PRDX6 gene and protein, respectively. CCK8 method was used to detect the proliferation activity of HepG2 cells, scratch healing test was used to detect the migration ability, Transwell chamber was used to detect the invasion ability, and Western blot was used to detect the expression levels of PI3K/Akt/mTOR signaling pathway and Notch signaling pathway-related proteins. Results: The expression of PRDX6 was significantly correlated with the gender, race, clinical stage, histological grade, and survival time of HCC patients (P < 0.05). Compared with that in WT and sh-NC groups, the expression level of PRDX6 protein in HCC patients was significantly lower (P < 0.01), the proliferation activity of HCC cells was significantly decreased (P < 0.05), and the migration and invasion ability was significantly decreased (P < 0.05) in the sh-PRDX6 group. The expression levels of PI3K, p-Akt, p-mTOR, Notch1, and Hes1 proteins in the sh-PRDX6 group were significantly lower than those in WT and sh-NC groups (P < 0.05). Conclusion: The expression of PRDX6 may be closely related to the prognosis of HCC. Lentivirus-mediated PRDX6 knockdown can inhibit the proliferation, migration and invasion of HCC cells, which may be related to its regulating the PI3K/Akt/mTOR and Notch1 signaling pathways. PRDX6 is expected to be a new target for the diagnosis and treatment of liver cancer.

3.
Biochem Biophys Res Commun ; 705: 149736, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38447392

RESUMO

BACKGROUND: Orosomucoid (ORM) has been reported as a biomarker of carotid atherosclerosis, but the role of ORM 2, a subtype of ORM, in carotid atherosclerotic plaque formation and the underlying mechanism have not been established. METHODS: Plasma was collected from patients with carotid artery stenosis (CAS) and healthy participants and assessed using mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) technology to identify differentially expressed proteins. The key proteins and related pathways were identified via western blotting, immunohistochemistry, and polymerase chain reaction of carotid artery plaque tissues and in vitro experiments involving vascular smooth muscle cells (VSMCs). RESULTS: We screened 33 differentially expressed proteins out of 535 proteins in the plasma. Seventeen proteins showed increased expressions in the CAS groups relative to the healthy groups, while 16 proteins showed decreased expressions during iTRAQ and bioinformatic analysis. The reactive oxygen species metabolic process was the most common enrichment pathway identified by Gene Ontology analysis, while ORM2, PRDX2, GPX3, HP, HBB, ANXA5, PFN1, CFL1, and S100A11 were key proteins identified by STRING and MCODE analysis. ORM2 showed increased expression in patients with CAS plaques, and ORM2 was accumulated in smooth muscle cells. Oleic acid increased the lipid accumulation and ORM2 and PRDX6 expressions in the VSMCs. The recombinant-ORM2 also increased the lipid accumulation and reactive oxygen species (ROS) in the VSMCs. The expressions of ORM2 and PRDX-6 were correlated, and MJ33 (an inhibitor of PRDX6-PLA2) decreased ROS production and lipid accumulation in VSMCs. CONCLUSION: ORM2 may be a biomarker for CAS; it induced lipid accumulation and ROS production in VSMCs during atherosclerosis plaque formation. However, the relationships between ORM2 and PRDX-6 underlying lipid accumulation-induced plaque vulnerability require further research.


Assuntos
Aterosclerose , Estenose das Carótidas , Placa Aterosclerótica , Humanos , Estenose das Carótidas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Orosomucoide/metabolismo , Músculo Liso Vascular/metabolismo , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Biomarcadores/metabolismo , Artérias Carótidas/metabolismo , Miócitos de Músculo Liso/metabolismo , Lipídeos , Profilinas/metabolismo
4.
Fish Shellfish Immunol ; 146: 109419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301812

RESUMO

Peroxiredoxins (Prxs) are a family of antioxidant enzymes crucial for shielding cells against oxidative damage from reactive oxygen species (ROS). In this study, we cloned and analyzed two grass carp peroxiredoxin genes, CiPrx5 and CiPrx6. These genes exhibited ubiquitous expression across all sampled tissues, with their expression levels significantly modulated upon exposure to grass carp reovirus (GCRV). CiPrx5 was localized in the mitochondria, while CiPrx6 was uniformly distributed in the whole cells. Transfection or transformation of CiPrx5 and CiPrx6 into fish cells or E. coli significantly enhanced host resistance to H2O2 and heavy metals, leading to increased cell viability and reduced cell apoptosis rates. Furthermore, purified recombinant CiPrx5 and CiPrx6 proteins effectively protected DNA against oxidative damage. Notably, overexpression of both peroxiredoxins in fish cells effectively inhibited GCRV replication, reduced intracellular ROS levels induced by GCRV infection and H2O2 treatment, and induced autophagy. Significantly, these functions of CiPrx5 and CiPrx6 in GCRV replication and ROS mitigation were abolished upon treatment with an autophagy inhibitor. In summation, our findings suggest that grass carp Prx5 and Prx6 promote autophagy to inhibit GCRV replication, decrease intracellular ROS, and provide protection against oxidative stress.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Carpas/genética , Carpas/metabolismo , Espécies Reativas de Oxigênio , Peroxirredoxinas/genética , Escherichia coli , Peróxido de Hidrogênio , Infecções por Reoviridae/prevenção & controle , Estresse Oxidativo , Autofagia , Doenças dos Peixes/prevenção & controle
5.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003466

RESUMO

The continuum of antioxidant response dysregulation in aging/oxidative stress-driven Nlrp3 inflammasome activation-mediated inflammatory response is associated with age-related diseases. Peroxiredoxin (Prdx) 6 is a key antioxidant that provides cytoprotection by regulating redox homeostasis. Herein, using lens epithelial cells (LECs) derived from the targeted inactivation of Prdx6 gene and aging lenses, we present molecular evidence that Prdx6-deficiency causes oxidative-driven Nlrp3 inflammasome activation, resulting in pyroptosis in aging/redox active cells wherein Prdx6 availability offsets the inflammatory process. We observed that Prdx6-/- and aging LECs harboring accumulated reactive oxygen species (ROS) showed augmented activation of Nlrp3 and bioactive inflammatory components, like Caspase-1, IL-1ß, ASC and Gasdermin-D. Similar to lipopolysaccharide treatment, oxidative exposure led to further ROS amplification with increased activation of the Nlrp3 inflammasome pathway. Mechanistically, we found that oxidative stress enhanced Kruppel-like factor 9 (Klf9) expression in aging/Prdx6-/- mLECs, leading to a Klf9-dependent increase in Nlrp3 transcription, while the elimination of ROS by the delivery of Prdx6 or by silencing Klf9 prevented the inflammatory response. Altogether, our data identify the biological significance of Prdx6 as an intrinsic checkpoint for regulating the cellular health of aging or redox active LECs and provide opportunities to develop antioxidant-based therapeutic(s) to prevent oxidative/aging-related diseases linked to aberrant Nlrp3 inflammasome activation.


Assuntos
Antioxidantes , Inflamassomos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Inflamassomos/metabolismo , Estresse Oxidativo , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Células Epiteliais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
Biochemistry (Mosc) ; 88(8): 1156-1164, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758314

RESUMO

The aim of the work was to study effects of peroxiredoxin 6 (PRDX6), a recombinant antioxidant protein, on the level of pro-inflammatory responses of RAW 264.7 macrophages to endotoxin exposure. Addition of LPS to the RAW 264.7 cell culture medium expectedly increased production of TNF-α, and addition of PRDX6 led to a significant (15-20%) decrease in its production. The level of production of another pro-inflammatory cytokine, IL-1ß, which was significantly activated by endotoxin, was completely normalized under the PRDX6 action. Moreover, addition of PRDX6 reduced production of reactive oxygen species (ROS) induced by endotoxin and also prevented overexpression of the iNos gene in the RAW 264.7 cells. The results showed that PRDX6 had a suppressive effect on the expression of Nrf-2 gene and production of the transcription factor NRF-2 during the first 6 h of cell cultivation. Addition of endotoxin caused activation of the NF-κB and SAPK/JNK signaling cascades, while in the presence of PRDX6, activity of these signaling cascades decreases. It is known that the pro-inflammatory response of cells caused by exposure to bacterial LPS leads to activation of apoptosis and elimination of the damaged cells. Our studies confirm this, since exposure to LPS led to activation of the expression of P53 gene, a marker of apoptosis. Peroxiredoxin 6 added within the first hours of the development of acute pro-inflammatory response suppressed the P53 gene expression, indicating protective effect of PRDX6 that reduced apoptosis in the RAW 264.7 macrophages.


Assuntos
Inflamação , Macrófagos , Peroxirredoxina VI , Animais , Camundongos , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Peroxirredoxina VI/genética , Células RAW 264.7 , Transdução de Sinais
7.
Arch Biochem Biophys ; 746: 109729, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633587

RESUMO

This study aimed to assess the effects of the immunomodulator thymulin, a thymic peptide with anti-inflammatory effects, and peroxiredoxin 6 (Prdx6), an antioxidant enzyme with dual peroxidase and phospholipase A2 activities, on the blood‒brain barrier (BBB) condition and general health status of animals with relapsing-remitting experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis in humans. Both thymulin and Prdx6 significantly improved the condition of the BBB, which was impaired by EAE induction, as measured by Evans blue dye accumulation, tight-junction protein loss in brain tissue, and lymphocyte infiltration through the BBB. The effect was associated with significant amelioration of EAE symptoms. Thymulin treatment was accompanied by a decrease in immune cell activation as judged by interleukin-6, -17, and interferon-gamma cytokine levels in serum and NF-kappaB cascade activation in splenocytes of mice with EAE. Prdx6 did not induce significant immunomodulatory effects but abruptly decreased EAE-induced NOX1 and NOX4 gene expression in brain tissue, which may be one of the possible mechanisms of its beneficial effects on BBB conditions and health status. The simultaneous administration of thymulin and Prdx6 resulted in complete symptomatic restoration of mice with EAE. The results demonstrate prospective strategies for multiple sclerosis treatment.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Humanos , Camundongos , Barreira Hematoencefálica , Encefalomielite Autoimune Experimental/tratamento farmacológico , Modelos Teóricos , Esclerose Múltipla/tratamento farmacológico , Peroxirredoxina VI , Estudos Prospectivos , Fator Tímico Circulante/farmacologia , Fator Tímico Circulante/uso terapêutico
8.
Neurochem Res ; 48(12): 3571-3584, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37556038

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with selective degeneration of motor neurons. It has been reported that an increase in the levels of inflammatory cytokines and glial cells such as reactive astrocytes is closely involved in the pathological progression of ALS. Recently, the levels of neuropathic cytotoxic (A1) astrocytes among reactive astrocytes have reportedly increased in the central nervous system of ALS mice, which induce motor neuron degeneration through the production of inflammatory cytokines and secretion of neuropathic factors. Hence, elucidating the induction mechanism of A1 astrocytes in ALS is important to understand the mechanism of disease progression in ALS. In this study, we observed that the expression of peroxiredoxin 6 (PRDX6), a member of the peroxiredoxin family, was markedly upregulated in astrocytes of the lumbar spinal cord of SOD1G93A mice model for ALS. Additionally, when PRDX6 was transiently transfected into the mouse astrocyte cell line C8-D1A and human astrocytoma cell line U-251 MG, the mRNA expression of complement C3 (a marker for A1 astrocyte phenotype) and inflammatory cytokines was increased. Furthermore, the mRNA expression of C3 and inflammatory cytokine was increased in C8-D1A and U-251 MG cells stably expressing PRDX6, and the increased mRNA expression was significantly suppressed by MJ33 (lithium[1-hexadecoxy-3-(2,2,2-trifluoroethoxy) propan-2-yl] methyl phosphate), an inhibitor of the phospholipase A2 activity of PRDX6. Our results suggest that the expression of PRDX6 in astrocytes plays an important role in the induction of A1 astrocytes and expression of inflammatory cytokines in the ALS mice model.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Camundongos , Humanos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Doenças Neurodegenerativas/metabolismo , Camundongos Transgênicos , Medula Espinal/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Síndromes Neurotóxicas/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase/metabolismo
9.
Front Aging Neurosci ; 15: 1169211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529008

RESUMO

Introduction: Damage to retinal pigment epithelium (RPE) cells caused by oxidative stress is closely related to the pathogenesis of several blinding retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and other inherited retinal degenerative conditions. However, the mechanisms of this process are poorly understood. Hence, the goal of this study was to investigate hydrogen peroxide (H2O2)-induced oxidative damage and protective role of peroxiredoxin 6 (PRDX6) protein via EGFR/ERK signaling pathway in RPE cells. Methods: Cells from a human RPE cell line (ARPE-19 cells) were treated with H2O2, and then cell viability was assessed using the methyl thiazolyl tetrazolium assay. Cell death and reactive oxygen species (ROS) were detected by flow cytometry. The levels of PRDX6, epidermal growth factor receptor (EGFR), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) were detected by Western blot assay. PRDX6 and EGFR were also detected via immunofluorescence staining. Results: Our results show that H2O2 inhibited cell viability, induced cell death, and increased ROS levels in ARPE-19 cells. It was also found that H2O2 decreased the levels of PRDX6, EGFR, and phosphorylated ERK but increased the levels of phosphorylated P38MAPK and JNK. PRDX6 overexpression was found to attenuate H2O2-induced inhibition of cell viability and increased cell death and ROS production in ARPE-19 cells. PRDX6 overexpression also increased the expression of EGFR and alleviated the H2O2-induced decrease in EGFR and phosphorylated ERK. Moreover, inhibition of epidermal growth factor-induced EGFR and ERK signaling in oxidative stress was partially blocked by PRDX6 overexpression. Discussion: Our findings indicate that PRDX6 overexpression protects RPE cells from oxidative stress damage caused by decreasing ROS production and partially blocking the inhibition of the EGFR/ERK signaling pathway induced by oxidative stress. Therefore, PRDX6 shows promise as a therapeutic target for the prevention of RPE cell damage caused by oxidative stress associated with retinal diseases.

10.
J Biochem Mol Toxicol ; 37(11): e23456, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439684

RESUMO

We aim to study the inhibitory effect of alkaline serine protease (ASPNJ) on lymphocytic leukemia Jurkat cells and its related mechanism through examining the expression of membrane proteins or membrane-associated proteins. MTT assay and trypan blue staining were used to detect the inhibitory effect of ASPNJ on the proliferation and growth of Jurkat cells. Wright-Giemsa staining was used to observe the effect of ASPNJ on the morphology of Jurkat cells. The effect of ASPNJ on Jurkat cell apoptosis was detected by flow cytometry. Two-dimensional electrophoresis-mass spectrometry (2-DE-MS) was used to detect and identify the differentially expressed proteins of Jurkat cells treated with ASPNJ (4 µg/mL, 3 h), of which three were selected and verified by Western blot. ASPNJ significantly inhibited the proliferation of leukemia cells (Raji, U937, and Jurkat), caused obvious morphological changes, and induced apoptosis of Jurkat cells. ASPNJ also increased the sensitivity of Jurkat cells to vincristine (VCR). Seven differentially expressed proteins were obtained through 2DE-MS, of which Peroxiredoxin-6 (PRDX6), Calcium-binding protein (CHP1), and 40S ribosomal protein SA (RPSA) were validated. ASPNJ can cause significant toxic effects on Jurkat cells and enhance the effects of VCR. The mechanism of action of ASPNJ on Jurkat cells may be related to differentially expressed proteins such as PRDX6. This study provides a new experimental basis and direction for antileukemia research.


Assuntos
Serina Proteases , Serina , Humanos , Células Jurkat , Serina Proteases/farmacologia , Proteínas de Membrana , Proliferação de Células , Vincristina/farmacologia , Apoptose , Serina Endopeptidases
11.
Exp Ther Med ; 26(2): 375, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37415842

RESUMO

Cigarette smoke (CS)-induced accelerated senescence and insufficient autophagy has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Peroxiredoxin (PRDX) 6 is a protein with prevalent antioxidant capacity. Previous studies indicate that PRDX6 could activate autophagy and alleviate senescence in other diseases. The present study investigated whether PRDX6-regulated autophagy was involved in the regulation of CS extract (CSE)-induced BEAS-2B cell senescence via the knockdown of PRDX6 expression. Furthermore, the present study evaluated the mRNA levels of PRDX6, autophagy and senescence-associated genes in the small airway epithelium from patients with COPD by analyzing the GSE20257 dataset from the Gene Expression Omnibus database. The results demonstrated that CSE reduced PRDX6 expression levels and transiently induced the activation of autophagy, followed by the accelerated senescence of BEAS-2B cells. Knockdown of PRDX6 induced autophagy degradation and accelerated senescence in CSE-treated BEAS-2B cells. Furthermore, autophagy inhibition by 3-Methyladenine increased P16 and P21 expression levels, while autophagy activation by rapamycin reduced P16 and P21 expression levels in CSE-treated BEAS-2B cells. The GSE20257 dataset revealed that patients with COPD had lower PRDX6, sirtuin (SIRT) 1 and SIRT6 mRNA levels, and higher P62 and P16 mRNA levels compared with non-smokers. P62 mRNA was significantly correlated with P16, P21 and SIRT1, which indicated that insufficient autophagic clearance of damaged proteins could be involved in accelerated cell senescence in COPD. In conclusion, the present study demonstrated a novel protective role for PRDX6 in COPD. Furthermore, a reduction in PRDX6 could accelerate senescence by inducing autophagy impairment in CSE-treated BEAS-2B cells.

12.
Int J Biol Macromol ; 242(Pt 3): 124796, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178881

RESUMO

1-Cys peroxiredoxin6 (Prdx6) is unique and inducible bifunctional enzyme in the mammalian lungs and plays a role in the progression and inhibition of cancerous cells at different stages. The enzyme possesses two distinct active sites for phospholipase A2 and peroxidase activity. The conserved residues surrounding the peroxidase active site, also called as second shell residues are Glu50, Leu71, Ser72, His79 and Arg155. Since there is no study done about the active site stabilization of the transition state of Prdx6, there are a lot of questions unanswered regarding the Prdx6 peroxidase activity. In order to evaluate the role of second shell conserved residue Glu50, present in close vicinity to peroxidatic active site, we substituted this negatively charged residue with Alanine and Lysine. To explore the effect of mutation on the biophysical parameters, the mutant proteins were compared with Wild-Type by using biochemical, biophysical, and in silico methods. Comparative spectroscopic methods and enzyme activity demonstrate that the Glu50 plays a significant role in maintaining the structure, stability, and function of protein. From the results we conclude that Glu50 significantly controls the structure; stability and may be involved in the active site stabilization of transition state for proper position of diverse peroxides.


Assuntos
Peroxidases , Peroxirredoxina VI , Animais , Peroxirredoxina VI/genética , Peroxirredoxina VI/química , Peroxidases/metabolismo , Fosfolipases A2/metabolismo , Peroxidase/metabolismo , Antioxidantes/química , Mamíferos/metabolismo
13.
J Hepatol ; 79(2): 403-416, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37040844

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is a chronic inflammatory disease that can further progress to cirrhosis and hepatocellular carcinoma. However, the key molecular mechanisms behind this process have not been clarified. METHODS: We analyzed human NASH and normal liver tissue samples by RNA-sequencing and liquid chromatography-mass spectrometry, identifying hepatocyte cytosolic protein Myc-interacting zinc-finger protein 1 (Miz1) as a potential target in NASH progression. We established a Western diet+fructose-induced NASH model in hepatocyte-specific Miz1 knockout and adeno-associated virus type 8-overexpressing mice. Human NASH liver organoids were used to confirm the mechanism, and immunoprecipitation and mass spectrometry were used to detect proteins that could interact with Miz1. RESULTS: We demonstrate that Miz1 is reduced in hepatocytes in human NASH. Miz1 is shown to bind to peroxiredoxin 6 (PRDX6), retaining it in the cytosol, blocking its interaction with mitochondrial Parkin at Cys431, and inhibiting Parkin-mediated mitophagy. In NASH livers, loss of hepatocyte Miz1 results in PRDX6-mediated inhibition of mitophagy, increased dysfunctional mitochondria in hepatocytes, and production of proinflammatory cytokines, including TNFα, by hepatic macrophages. Crucially, the increased production of TNFα results in a further reduction in hepatocyte Miz1 by E3-ubiquitination. This produces a positive feedback loop of TNFα-mediated hepatocyte Miz1 degradation, resulting in PRDX6-mediated inhibition of hepatocyte mitophagy, with the accumulation of dysfunctional mitochondria in hepatocytes and increased macrophage TNFα production. CONCLUSIONS: Our study identified hepatocyte Miz1 as a suppressor of NASH progression via its role in mitophagy; we also identified a positive feedback loop by which TNFα production induces degradation of cytosolic Miz1, which inhibits mitophagy and thus leads to increased macrophage TNFα production. Interruption of this positive feedback loop could be a strategy to inhibit the progression of NASH. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH) is a chronic inflammatory disease that can further develop into cirrhosis and hepatocellular carcinoma. However, the key molecular mechanism of this process has not been fully clarified. Herein, we identified a positive feedback loop of macrophage TNFα-mediated hepatocyte Miz1 degradation, resulting in PRDX6-mediated inhibition of hepatocyte mitophagy, aggravation of mitochondrial damage and increased macrophage TNFα production. Our findings not only provide mechanistic insight into NASH progression but also provide potential therapeutic targets for patients with NASH. Our human NASH liver organoid culture is therefore a useful platform for exploring treatment strategies for NASH development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Fator de Necrose Tumoral alfa/metabolismo , Mitofagia , Retroalimentação , Hepatócitos/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/uso terapêutico
14.
Ann Transl Med ; 11(2): 41, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36819569

RESUMO

Background: This research sought to elucidate the effects of peroxiredoxin 6 (PRDX6) on the biological processes in diabetic nephropathy (DN) and to identify the underlying regulatory mechanism related to toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling. Methods: To induce an in vitro DN cellular model, human kidney 2 (HK-2) cells were treated with high glucose (HG). The mitochondrial membrane potential, adenosine triphosphate level, reactive oxygen species generation, and oxidative stress of the cells were then evaluated. After the PRDX6 level had been determined, the effects of its overexpression on the mitochondrial membrane potential, adenosine triphosphate level, reactive oxygen species generation, and oxidative stress of the cells were assessed. Next, cytochrome c expression, cell viability, cell apoptosis, the inflammatory level, and the TLR4/NF-κB signaling-related factors were assessed. After the addition of the TLR4 activator CRX-527 or the NF-κB activator phorbol 12-myristate 13-acetate (PMA), cell viability, cell apoptosis and the inflammatory level were evaluated again. Results: The results revealed that HG exposure triggered mitochondrial dysfunction and oxidative stress and decreased PRDX6 expression in the HK-2 cells. PRDX6 elevation exacerbated cell viability while alleviating mitochondrial membrane potential loss, oxidative stress, apoptosis, and inflammation in the HG-treated HK-2 cells. Further, PRDX6 inhibited HG-induced TLR4/NF-κB activation. The administration of CRX-527 or PMA reversed the effects of PRDX6 on the cell viability, apoptosis, and inflammation of the HG-exposed HK-2 cells. Conclusions: To conclude, PRDX6 appears to protect HG-exposed HK-2 cells against inflammation and apoptosis by inhibiting TLR4/NF-κB signaling.

15.
Cells ; 12(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36611974

RESUMO

Peroxiredoxin 6 (PRDX6) is widely distributed in several organs, especially the lungs. The role of PRDX6 in oxidative stress is controversial and even contradictory, as indicated by research conducted over the past 20 years. PRDX6 has anti-oxidant or pro-oxidant effects on oxidative stress in different diseases. It can even exhibit both anti-oxidant and pro-oxidant effects in the same disease. These findings are attributed to the fact that PRDX6 is a multifunctional enzyme. The peroxidase and phospholipase A2 activity of PRDX6 is closely related to its anti-oxidant and pro-oxidant effects, which leads to the conflicting regulatory effects of PRDX6 on oxidative stress in respiratory diseases. Moreover, PRDX6 interacts with multiple redox signaling pathways to interfere with cell proliferation and apoptosis. PRDX6 has become a new target in respiratory disease research due to its important regulatory role in oxidative stress. In this paper, the role of PRDX6 in oxidative stress in respiratory diseases and the research progress in targeting PRDX6 are reviewed.


Assuntos
Antioxidantes , Doenças Respiratórias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Peroxirredoxina VI/metabolismo , Estresse Oxidativo
16.
Antioxidants (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671002

RESUMO

A major hallmark of aging-associated diseases is the inability to evoke cellular defense responses. Transcriptional protein Nrf2 (nuclear factor erythroid-derived 2-related factor) plays a pivotal role in the oxidative stress response, cellular homeostasis, and health span. Nrf2's activation has been identified as a therapeutic target to restore antioxidant defense in aging. Here, we demonstrated that FDA-approved drug, hydralazine (Hyd), was a reactivator of the Nrf2/ARE (antioxidant response element) pathway in various ages and types of mouse (m) or human (h) lens epithelial cells (LECs) and mice lenses in-vitro/in-vivo. This led to Hyd-driven abatement of carbonyls, reduced reactive oxygen species (ROS), and reduced 4-HNE/MDA-adducts with cytoprotection, and extended lens healthspan by delaying/preventing lens opacity against aging/oxidative stress. We elucidated that Hyd activated the protective signaling by inducing Nrf2 to traverse from the cytoplasm to the nucleus and potentiated the ARE response by direct interaction of Nrf2 and ARE sequences of the promoter. Loss-of-function study and cotreatment of Hyd and antioxidant, N-acetyl cysteine (NAC) or Peroxiredoxin (Prdx)6, specified that Nrf2/ARE-driven increase in the promoter activity was Hyd-dependent. Our study provides proof-of concept evidence and, thereby, paves the way to repurposing Hyd as a therapeutic agent to delay/prevent aging and oxidative-related disorders.

17.
Meat Sci ; 195: 109021, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335866

RESUMO

The objective of the present study was to explore the effect of Peroxiredoxin 6 (Prdx 6) on beef tenderization during the early postmortem period. The longissimus lumborum (LL) were obtained at 45 min postmortem from 6 beef carcasses and then incubated with or without the inhibitor of Prdx6 (NSC348884) for different times, followed by incubation with or without the H2O2 (simulation of oxidative stress). The expression of Prdx6, proteolysis indicated by desmin degradation, cell apoptosis rate and expression of caspases were measured. The results indicated that the inhibitor significantly reduced the Prdx6 level, while the cells adaptively increased Prdx6 expression to resist the oxidative stress caused by H2O2. Moreover, the samples in which Prdx6 was inhibited demonstrated more severe desmin degradation accompanied by a higher apoptosis rate which was induced by the increase in caspase degradation as well as the ratio of Bax/Bcl-2. These results demonstrated that inhibiting Prdx6 could promote cell apoptosis and further accelerate beef tenderization.


Assuntos
Peróxido de Hidrogênio , Peroxirredoxina VI , Bovinos , Animais , Peroxirredoxina VI/metabolismo , Peroxirredoxina VI/farmacologia , Desmina/metabolismo , Proteólise , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo
18.
Microvasc Res ; 146: 104471, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566948

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disorder whose underlying pathogenesis is unknown. Our previous study showed that pulmonary endothelial cell (PAEC) ferroptosis is involved in the progression of PH by releasing High-mobility group box 1 (HMGB1) and activating Toll-like receptor 4/NOD-like receptor family pyrin domain containing 3 (TLR4/NLRP3) inflammasome signalling. The precise mechanisms that regulate ferroptosis in PH are unclear. This study aimed to investigate the effect of peroxiredoxin 6 (PRDX6) on PAEC ferroptosis in PH. METHODS: A rat model of PH was established with monocrotaline (MCT), and the distribution and expression of PRDX6 in the pulmonary artery were examined. Lentiviral vectors carrying PRDX6 (LV-PRDX6) were transfected into PAECs and injected into MCT-induced PH rats. Cell viability, MDA levels, reactive oxygen species (ROS) levels, labile iron pool (LIP) levels and mitochondrial morphology were examined. Ferroptosis-related proteins (NADPH oxidase-4 (NOX4), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1(FTH1)), TLR4, NLRP3 inflammasome markers, HMGB1 and inflammatory cytokines were examined. Pulmonary vascular remodelling and right ventricular structure and function were measured. RESULTS: PRDX6 was expressed in PAECs and was significantly decreased in PH. PRDX6 overexpression significantly inhibited ferroptosis in PAECs under PH conditions in vitro and in vivo, as indicated by increased cell viability, decreased MDA, ROS and LIP levels, inhibited mitochondrial damage, upregulated GPX4 and FTH1 expression, and downregulated NOX4 expression. PRDX6 overexpression attenuated pulmonary vascular remodelling and changes in right ventricle structure and function in MCT-induced PH rats. Moreover, PRDX6 overexpression prevented HMGB1 release by PAECs and decreased TLR4 and NLRP3 inflammasome expression and inflammatory cytokine release in macrophages, while RSL3, a specific activator of ferroptosis, reversed these effects. CONCLUSIONS: Taken together, these findings indicate that PRDX6 regulates PAEC ferroptosis through the release of HMGB1 and activation of the TLR4/NLRP3 inflammasome signalling pathway, providing novel therapeutic targets for the treatment of PH.


Assuntos
Ferroptose , Proteína HMGB1 , Hipertensão Pulmonar , Ratos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/tratamento farmacológico , Artéria Pulmonar/patologia , Monocrotalina/toxicidade , Proteína HMGB1/metabolismo , Peroxirredoxina VI/farmacologia , Peroxirredoxina VI/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Inflamassomos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptor 4 Toll-Like/metabolismo , Remodelação Vascular , Células Endoteliais/metabolismo
19.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499590

RESUMO

Peroxiredoxin 6 (Prdx6) is a multifunctional eukaryotic antioxidant enzyme. Mammalian Prdx6 possesses peroxidase activity against a wide range of organic and inorganic hydroperoxides, as well as exhibits phospholipase A2 (aiPLA2) activity, which plays an important role in the reduction of oxidized phospholipids and cell membrane remodeling. Exogenous Prdx6 has recently been shown to be able to penetrate inside the cell. We hypothesized that this entry may be due to the phospholipase activity of Prdx6. Experiments using exogenous Prdx6 in three cell lines (3T3, A549, RAW 264.7) demonstrated that it is the phospholipase activity that promotes its penetration into the cell. Overoxidation of Prdx6 led to a suppression of the peroxidase activity and a 3-to-4-fold growth of aiPLA2, which enhanced the efficiency of its transmembrane transport into the cells by up to 15 times. A mutant form of Prdx6-S32A with an inactivated phospholipase center turned out to be unable to enter the cells in both the reduced and oxidized state of the peroxidase active center. Previously, we have shown that exogenous Prdx6 has a significant radioprotective action. However, the role of phospholipase activity in the radioprotective effects of Prdx6 remained unstudied. Trials with the mutant Prdx6-S32A form, with the use of a total irradiation model in mice, showed a nearly 50% reduction of the radioprotective effect upon aiPLA2 loss. Such a significant decrease in the radioprotective action may be due to the inability of Prdx6-S32A to penetrate animal cells, which prevents its reduction by the natural intracellular reducing agent glutathione S-transferase (πGST) and lowers the efficiency of elimination of peroxides formed from the effect of ionizing radiation. Thus, phospholipase activity may play an important role in the reduction of oxidized Prdx6 and manifestation of its antioxidant properties.


Assuntos
Peroxidase , Peroxirredoxina VI , Camundongos , Animais , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Peroxidase/metabolismo , Fosfolipases A2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peroxidases , Mamíferos/metabolismo
20.
Biomed Pharmacother ; 156: 113931, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411620

RESUMO

Hepatic fibrosis is a chronic inflammatory process with hepatic stellate cells (HSCs) activation. Peroxiredoxin 6 (PRDX6), a multifunctional protein, was reported to protect against liver injury induced by ischemia/reperfusion and high-fat diet. However, the effect of PRDX6 on hepatic fibrosis remains unclear. Male Sprague-Dawley rats were treated with carbon tetrachloride (CCl4) for 4-8 weeks to induce hepatic fibrosis. Here, we found that PRDX6 was mainly expressed in hepatocytes and significantly upregulated in CCl4-induced liver fibrosis. To clarify the impact of PRDX6 in hepatic fibrosis, we constructed a PRDX6 knockout (PRDX6-/-) rat model by using CRISPR/Cas9 method. We found that PRDX6 deficiency accelerated CCl4-induced liver fibrosis. Furthermore, we found that PRDX6 knockout promoted α-SMA expression in normal and fibrotic conditions, especially in hepatic fibrosis. PRDX6 knockout significantly upregulated Col1α1 and Col3α1 in fibrotic tissues. To explore the underlying mechanisms, we identified mesencephalic astrocyte-derived neurotrophic factor (MANF), a suppressor for hepatic fibrosis and NF-κB pathway, as an interacting protein of PRDX6. PRDX6 promoted MANF secretion by binding to the C-terminus of MANF, which did not depend on its peroxidase and PLA2 activities. Similarly, MANF increased PRDX6 protein level and promoted its secretion. Additionally, PRDX6 knockout increased p65 level either in cytoplasm or nuclei in HSCs under fibrotic condition. In conclusion, PRDX6 is an effective inhibitor for hepatic fibrosis through a non-enzymic dependent interacting with MANF, which will offer a potential target for hepatic fibrosis therapy.


Assuntos
Células Estreladas do Fígado , Peroxirredoxina VI , Ratos , Masculino , Animais , Células Estreladas do Fígado/metabolismo , Peroxirredoxina VI/genética , Peroxirredoxina VI/farmacologia , Ratos Sprague-Dawley , Fibrose , Cirrose Hepática/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA