Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 72: 103125, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38574432

RESUMO

Acute inflammatory responses often involve the production of reactive oxygen and nitrogen species by innate immune cells, particularly macrophages. How activated macrophages protect themselves in the face of oxidative-inflammatory stress remains a long-standing question. Recent evidence implicates reactive sulfur species (RSS) in inflammatory responses; however, how endogenous RSS affect macrophage function and response to oxidative and inflammatory insults remains poorly understood. In this study, we investigated the endogenous pathways of RSS biogenesis and clearance in macrophages, with a particular focus on exploring how hydrogen sulfide (H2S)-mediated S-persulfidation influences macrophage responses to oxidative-inflammatory stress. We show that classical activation of mouse or human macrophages using lipopolysaccharide and interferon-γ (LPS/IFN-γ) triggers substantial production of H2S/RSS, leading to widespread protein persulfidation. Biochemical and proteomic analyses revealed that this surge in cellular S-persulfidation engaged ∼2% of total thiols and modified over 800 functionally diverse proteins. S-persulfidation was found to be largely dependent on the cystine importer xCT and the H2S-generating enzyme cystathionine γ-lyase and was independent of changes in the global proteome. We further investigated the role of the sulfide-oxidizing enzyme sulfide quinone oxidoreductase (SQOR), and found that it acts as a negative regulator of S-persulfidation. Elevated S-persulfidation following LPS/IFN-γ stimulation or SQOR inhibition was associated with increased resistance to oxidative stress. Upregulation of persulfides also inhibited the activation of the macrophage NLRP3 inflammasome and provided protection against inflammatory cell death. Collectively, our findings shed light on the metabolism and effects of RSS in macrophages and highlight the crucial role of persulfides in enabling macrophages to withstand and alleviate oxidative-inflammatory stress.


Assuntos
Sulfeto de Hidrogênio , Ativação de Macrófagos , Macrófagos , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Animais , Camundongos , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Lipopolissacarídeos , Inflamação/metabolismo , Cistationina gama-Liase/metabolismo , Sulfetos/farmacologia , Interferon gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Proteômica/métodos
2.
Br J Pharmacol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37908126

RESUMO

Nitric oxide (• NO) interactions with biological thiols play crucial, but incompletely determined, roles in vascular signalling and other biological processes. Here, we highlight two recently proposed signalling paradigms: (1) the formation of a vasodilating labile nitrosyl ferrous haem (NO-ferrohaem) facilitated by thiols via thiyl radical generation and (2) polysulfides/persulfides and their interaction with • NO. We also describe the specific (bio)chemical routes in which • NO and thiols react to form S-nitrosothiols, a broad class of small molecules, and protein post-translational modifications that can influence protein function through catalytic site or allosteric structural changes. S-Nitrosothiol formation depends upon cellular conditions, but critically, an appropriate oxidant for either the thiol (yielding a thiyl radical) or • NO (yielding a nitrosonium [NO+ ]-donating species) is required. We examine the roles of these collective • NO/thiol species in vascular signalling and their cardiovascular therapeutic potential.

3.
Front Microbiol ; 14: 1276447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965540

RESUMO

A principal concept in developing antibacterial agents with selective toxicity is blocking metabolic pathways that are critical for bacterial growth but that mammalian cells lack. Serine O-acetyltransferase (CysE) is an enzyme in many bacteria that catalyzes the first step in l-cysteine biosynthesis by transferring an acetyl group from acetyl coenzyme A (acetyl-CoA) to l-serine to form O-acetylserine. Because mammalian cells lack this l-cysteine biosynthesis pathway, developing an inhibitor of CysE has been thought to be a way to establish a new class of antibacterial agents. Here, we demonstrated that alkyl gallates such as octyl gallate (OGA) could act as potent CysE inhibitors in vitro and in bacteria. Mass spectrometry analyses indicated that OGA treatment markedly reduced intrabacterial levels of l-cysteine and its metabolites including glutathione and glutathione persulfide in Escherichia coli to a level similar to that found in E. coli lacking the cysE gene. Consistent with the reduction of those antioxidant molecules in bacteria, E. coli became vulnerable to hydrogen peroxide-mediated bacterial killing in the presence of OGA. More important, OGA treatment intensified susceptibilities of metallo-ß-lactamase-expressing Gram-negative bacteria (E. coli and Klebsiella pneumoniae) to carbapenem. Structural analyses showed that alkyl gallate bound to the binding site for acetyl-CoA that limits access of acetyl-CoA to the active site. Our data thus suggest that CysE inhibitors may be used to treat infectious diseases caused by drug-resistant Gram-negative bacteria not only via direct antibacterial activity but also by enhancing therapeutic potentials of existing antibiotics.

4.
Antioxid Redox Signal ; 39(13-15): 980-982, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603498

RESUMO

Over the past three decades, the perception of hydrogen sulfide (H2S) in living organisms has changed drastically. From being considered a toxic molecule, H2S is now considered a multifunctional signaling molecule that is involved directly or indirectly in a myriad of physiological processes in animal and plant cells but also in the mechanism of responses against adverse or pathological situations that usually have associated cellular oxidative stress. This Forum editorial introduces a set of articles (four reviewers and a research article) that emphasizes the relevance of H2S in the research area of plants and mammals as well as it also highlights the future directions of investigations. Antioxid. Redox Signal. 39, 980-982.


Assuntos
Sulfeto de Hidrogênio , Animais , Transdução de Sinais/fisiologia , Plantas , Estresse Oxidativo , Mamíferos
5.
Curr Opin Chem Biol ; 76: 102353, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356334

RESUMO

Recognition of the prevalence of hydropersulfides (RSSH) and characterization of their enhanced two-electron reactivity relative to thiols have led to their implication in maintaining cellular redox homeostasis, in addition to other potential roles. Recent attention on the one-electron reactivity of RSSH has uncovered their potent radical-trapping antioxidant activity, which enables them to inhibit phospholipid peroxidation and associated cell death by ferroptosis. Herein, we briefly review key aspects of the reactivity and underlying physicochemical properties of RSSH. We emphasize their reactivity to radicals-particularly lipid peroxyl radicals that propagate the lipid peroxidation chain reaction-and the recent recognition that this results in ferroptosis suppression. We highlight open questions related to recent developments in this area and, given that all living organisms possess the ability to synthesize persulfides endogenously, suggest they may be primordial radical scavengers that occurred early in evolution and still play a role today.


Assuntos
Antioxidantes , Sulfetos , Peroxidação de Lipídeos , Sulfetos/química , Antioxidantes/química , Morte Celular
6.
Antioxid Redox Signal ; 39(10-12): 728-743, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37154744

RESUMO

Significance: The essential roles of thiol compounds as redox signaling mediators and protectors have been established. Recently, the roles of persulfides and polysulfides as mediators involved in numerous physiological processes have been revealed. Recent Advances: Recently, it became possible to detect and measure persulfides and polysulfides in human fluids and tissues and their physiological functions, including cellular signaling and protection against oxidative stress, have been reported, but the underlying mechanisms and dynamics remain elusive. Critical Issues: Physiological functions of thiol compounds have been studied, focusing primarily on two-electron redox reactions. In contrast, the contribution of one-electron redox mechanisms, that is, free radical-mediated oxidation and antioxidation, has received much less attention. Considering the important effects of free radical-mediated oxidation of biological molecules on pathophysiology, the antioxidant functions of thiol compounds as free radical scavengers are challenging issues. Future Directions: The antioxidant actions and dynamics of thiols, hydropersulfides, and hydropolysulfides as free radical scavenging antioxidants and their physiological significance remain to be established. Antioxid. Redox Signal. 39, 728-743.


Assuntos
Antioxidantes , Compostos de Sulfidrila , Humanos , Antioxidantes/metabolismo , Oxirredução , Radicais Livres
7.
Antioxidants (Basel) ; 12(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37107243

RESUMO

Reactive sulfur species, or persulfides and polysulfides, such as cysteine hydropersulfide and glutathione persulfide, are endogenously produced in abundance in both prokaryotes and eukaryotes, including mammals. Various forms of reactive persulfides occur in both low-molecular-weight and protein-bound thiols. The chemical properties and great supply of these molecular species suggest a pivotal role for reactive persulfides/polysulfides in different cellular regulatory processes (e.g., energy metabolism and redox signaling). We demonstrated earlier that cysteinyl-tRNA synthetase (CARS) is a new cysteine persulfide synthase (CPERS) and is responsible for the in vivo production of most reactive persulfides (polysulfides). Some researchers continue to suggest that 3-mercaptopyruvate sulfurtransferase (3-MST), cystathionine ß-synthase (CBS), and cystathionine γ-lyase (CSE) may also produce hydrogen sulfide and persulfides that may be generated during the transfer of sulfur from 3-mercaptopyruvate to the cysteine residues of 3-MST or direct synthesis from cysteine by CBS/CSE, respectively. We thus used integrated sulfur metabolome analysis, which we recently developed, with 3-MST knockout (KO) mice and CBS/CSE/3-MST triple-KO mice, to elucidate the possible contribution of 3-MST, CBS, and CSE to the production of reactive persulfides in vivo. We therefore quantified various sulfide metabolites in organs derived from these mutant mice and their wild-type littermates via this sulfur metabolome, which clearly revealed no significant difference between mutant mice and wild-type mice in terms of reactive persulfide production. This result indicates that 3-MST, CBS, and CSE are not major sources of endogenous reactive persulfide production; rather, CARS/CPERS is the principal enzyme that is actually involved in and even primarily responsible for the biosynthesis of reactive persulfides and polysulfides in vivo in mammals.

8.
Biosci Rep ; 42(9)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36039860

RESUMO

Reactive sulfur species (RSS) have been recognized in the last two decades as very important molecules in redox regulation. They are involved in metabolic processes and, in this way, they are responsible for maintenance of health. This review summarizes current information about the essential biological RSS, including H2S, low molecular weight persulfides, protein persulfides as well as organic and inorganic polysulfides, their synthesis, catabolism and chemical reactivity. Moreover, the role of RSS disturbances in various pathologies including vascular diseases, chronic kidney diseases, diabetes mellitus Type 2, neurological diseases, obesity, chronic obstructive pulmonary disease and in the most current problem of COVID-19 is presented. The significance of RSS in aging is also mentioned. Finally, the possibilities of using the precursors of various forms of RSS for therapeutic purposes are discussed.


Assuntos
COVID-19 , Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfetos , Enxofre/química , Enxofre/metabolismo
9.
Free Radic Res ; 56(9-10): 677-690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36630595

RESUMO

Hydrogen sulfide, hydropersulfides, and hydropolysulfides have been revealed to play important physiological roles such as cell signaling and protection against oxidative stress, but the underlying mechanisms and dynamics of action remain elusive. It is generally accepted that these species act by two-electron redox mechanisms, while the involvement of one-electron redox chemistry has received less attention. In this study, the radical-scavenging activity of hydrogen persulfide, hydrogen polysulfides (HSnH n = 2-4), and diallyl- or dialkyl-sulfides (RSnR, n = 1-4) was measured. Furthermore, their antioxidant effects against free radical-mediated human plasma lipid peroxidation were assessed by measuring lipid hydroperoxides. It was found that disodium disulfide, trisulfide, and tetrasulfide acted as potent peroxyl radical scavengers, the rate constant for scavenging peroxyl radical being 3.5 × 105, 4.0 × 105, and 6.0 × 105 M-1 s-1 in PBS pH 7.4 at 37 °C respectively and that they inhibited plasma lipid peroxidation efficiently, the efficacy is increased with the catenation number. Disodium tetrasulfide was 1.5 times as reactive as Trolox toward peroxyl radical and inhibited plasma lipid peroxidation more efficiently than ascorbate and Trolox. On the other hand, diallyl- and dialkyl-sulfides did not exert significant radical-scavenging activity, nor did they inhibit lipid peroxidation efficiently, except for diallyl tetrasulfide, which suppressed plasma lipid peroxidation, despite less significantly than disodium tetrasulfide. Collectively, this study shows that hydrogen persulfide and hydrogen polysulfides act as potent radical-scavenging antioxidants and that, in addition to two-electron redox mechanisms, one electron redox reaction may also play important role in the in vivo defense against deleterious oxidative stress.


Assuntos
Antioxidantes , Sequestradores de Radicais Livres , Humanos , Antioxidantes/farmacologia , Peroxidação de Lipídeos , Sequestradores de Radicais Livres/farmacologia , Peróxidos , Sulfetos/farmacologia
10.
Nitric Oxide ; 116: 47-64, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534626

RESUMO

Sulfides and persulfides/polysulfides (R-Sn-R', n > 2; R-Sn-H, n > 1) are endogenously produced metabolites that are abundant in mammalian and human cells and tissues. The most typical persulfides that are widely distributed among different organisms include various reactive persulfides-low-molecular-weight thiol compounds such as cysteine hydropersulfide, glutathione hydropersulfide, and glutathione trisulfide as well as protein-bound thiols. These species are generally more redox-active than are other simple thiols and disulfides. Although hydrogen sulfide (H2S) has been suggested for years to be a small signaling molecule, it is intimately linked biochemically to persulfides and may actually be more relevant as a marker of functionally active persulfides. Reactive persulfides can act as powerful antioxidants and redox signaling species and are involved in energy metabolism. Recent evidence revealed that cysteinyl-tRNA synthetases (CARSs) act as the principal cysteine persulfide synthases in mammals and contribute significantly to endogenous persulfide/polysulfide production, in addition to being associated with a battery of enzymes including cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, which have been described as H2S-producing enzymes. The reactive sulfur metabolites including persulfides/polysulfides derived from CARS2, a mitochondrial isoform of CARS, also mediate not only mitochondrial biogenesis and bioenergetics but also anti-inflammatory and immunomodulatory functions. The physiological roles of persulfides, their biosynthetic pathways, and their pathophysiology in various diseases are not fully understood, however. Developing basic and high precision techniques and methods for the detection, characterization, and quantitation of sulfides and persulfides is therefore of great importance so as to thoroughly understand and clarify the exact functions and roles of these species in cells and in vivo.


Assuntos
Técnicas de Química Analítica/métodos , Sulfeto de Hidrogênio/análise , Sulfetos/análise , Animais , Linhagem Celular , Humanos , Sulfeto de Hidrogênio/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteínas/química , Proteômica/métodos , Sulfetos/metabolismo
11.
Pharmacol Ther ; 228: 107916, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34171332

RESUMO

Initially adopted as a mucolytic about 60 years ago, the cysteine prodrug N-acetylcysteine (NAC) is the standard of care to treat paracetamol intoxication, and is included on the World Health Organization's list of essential medicines. Additionally, NAC increasingly became the epitome of an "antioxidant". Arguably, it is the most widely used "antioxidant" in experimental cell and animal biology, as well as clinical studies. Most investigators use and test NAC with the idea that it prevents or attenuates oxidative stress. Conventionally, it is assumed that NAC acts as (i) a reductant of disulfide bonds, (ii) a scavenger of reactive oxygen species and/or (iii) a precursor for glutathione biosynthesis. While these mechanisms may apply under specific circumstances, they cannot be generalized to explain the effects of NAC in a majority of settings and situations. In most cases the mechanism of action has remained unclear and untested. In this review, we discuss the validity of conventional assumptions and the scope of a newly discovered mechanism of action, namely the conversion of NAC into hydrogen sulfide and sulfane sulfur species. The antioxidative and cytoprotective activities of per- and polysulfides may explain many of the effects that have previously been ascribed to NAC or NAC-derived glutathione.


Assuntos
Acetilcisteína , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Humanos , Sulfeto de Hidrogênio , Enxofre
12.
Biol Chem ; 402(3): 223-237, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33055309

RESUMO

3-Mercaptopyruvate sulfurtransferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate to generate an enzyme-bound hydropersulfide. Subsequently, MPST transfers the persulfide's outer sulfur atom to proteins or small molecule acceptors. MPST activity is known to be involved in hydrogen sulfide generation, tRNA thiolation, protein urmylation and cyanide detoxification. Tissue-specific changes in MPST expression correlate with ageing and the development of metabolic disease. Deletion and overexpression experiments suggest that MPST contributes to oxidative stress resistance, mitochondrial respiratory function and the regulation of fatty acid metabolism. However, the role and regulation of MPST in the larger physiological context remain to be understood.


Assuntos
Enxofre/metabolismo , Sulfurtransferases/metabolismo , Animais , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Humanos , Estrutura Molecular , Enxofre/química , Sulfurtransferases/química
13.
Biochim Biophys Acta Bioenerg ; 1862(2): 148338, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212042

RESUMO

Sulfane sulfur species comprise a variety of biologically relevant hydrogen sulfide (H2S)-derived species, including per- and poly-sulfidated low molecular weight compounds and proteins. A growing body of evidence suggests that H2S, currently recognized as a key signaling molecule in human physiology and pathophysiology, plays an important role in cancer biology by modulating cell bioenergetics and contributing to metabolic reprogramming. This is accomplished through functional modulation of target proteins via H2S binding to heme iron centers or H2S-mediated reversible per- or poly-sulfidation of specific cysteine residues. Since sulfane sulfur species are increasingly viewed not only as a major source of H2S but also as key mediators of some of the biological effects commonly attributed to H2S, the multifaceted role of these species in cancer biology is reviewed here with reference to H2S, focusing on their metabolism, signaling function, impact on cell bioenergetics and anti-tumoral properties.


Assuntos
Metabolismo Energético , Sulfeto de Hidrogênio/metabolismo , Neoplasias/metabolismo , Enxofre/metabolismo , Humanos
14.
Antioxidants (Basel) ; 9(11)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233376

RESUMO

Hydrogen sulfide (H2S) is endogenously produced by enzymes and via reactive persulfide/polysulfide degradation; it participates in a variety of biological processes under physiological and pathological conditions. H2S levels in biological fluids, such as plasma and serum, are correlated with the severity of various diseases. Therefore, development of a simple and selective H2S measurement method would be advantageous. This study aimed to generate antibodies specifically recognizing H2S derivatives and develop a colorimetric immunoassay for measuring H2S in biological samples. We used N-ethylmaleimide (NEM) as an H2S detection agent that forms a stable bis-S-adduct (NEM-S-NEM). We also prepared bis-S-heteroadduct with 3-maleimidopropionic acid, which, in conjugation with bovine serum albumin, was to immunize Japanese white rabbits and Wistar rats to enable generation of polyclonal and monoclonal antibodies, respectively. The generated antibodies were evaluated by competitive enzyme-linked immunosorbent assay. We could obtain two stable hybridoma cell lines producing monoclonal antibodies specific for NEM-S-NEM. By immunoassay with the monoclonal antibody, the H2S level in mouse plasma was determined as 0.2 µM, which was identical to the level detected by mass spectrometry. Taken together, these monoclonal antibodies can be a useful tool for a simple and highly selective immunoassay to detect H2S in biological samples.

15.
Angew Chem Int Ed Engl ; 59(49): 22238-22245, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840008

RESUMO

Reactive sulfur species, such as hydrogen sulfide, persulfides, and polysulfides, have recently emerged as key signaling molecules and important physiological mediators within mammalian systems. To better assess the therapeutic potential of their exogenous administration, we report on the development of a unique hydrogen peroxide (H2 O2 )-sensing motif and its capacity for providing cellular protection against oxidative stress while serving as a reactive oxygen species (ROS)-activated persulfide donor. With the strategic implementation of a gem-dimethyl group to promote both stability and cyclization, we found the initial rate of payload release from this newly derived scaffold to be directly proportional to the concentration of H2 O2 and to proceed via an unprecedented pathway that avoids the production of electrophilic byproducts, a severe limitation that has plagued the physiological application of previous designs.

16.
Antioxid Redox Signal ; 33(16): 1174-1189, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32631072

RESUMO

Significance: Redox biology is gaining ground in research related to human physiology (metabolism, signaling), pathophysiology (cancer, cardiovascular disease, neurodegeneration), and toxicology (radiation- or xenobiotic-induced damage). A major hurdle in advancing redox medicine is the current lack of understanding the mechanisms underpinning the observed detrimental or beneficial in vivo effects. To gain deeper insights into the underlying molecular pathways of redox regulation, we need to appreciate the strengths and limitations of the currently available methods. Recent Advances: Reactive sulfur species (RSS), including cysteine derivatives of peptides and proteins along with small molecules such as hydrogen sulfide or inorganic polysulfides, are major players in redox biology. RSS-mediated regulation of protein functions is a widely studied mechanism in the field, and considerable efforts have been devoted to the development of selective detection methods. Critical Issues: A large number of available methods rely on an alkylation step to freeze the dynamism of consecutive oxidation and reduction events among RSS at a particular time point inside the cell. This process uses the assumption that alkylation blocks all redox events instantaneously. We argue that unfortunately this is often not the case, which could have serious impacts on detected sulfur species speciation and confound experimental results. Future Directions: Novel technologies and prudent optimization of existing methods to accurately characterize the dynamic redox status of the thiol proteome as well as detailed understanding of regulatory and signaling capacities of protein polysulfidation are crucial to open new routes toward therapeutic interventions.


Assuntos
Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Alquilação , Cisteína/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Transdução de Sinais
17.
Antioxid Redox Signal ; 33(18): 1320-1331, 2020 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-32536194

RESUMO

Significance: Redox homeostasis is precisely modulated by intricate systems that regulate production, elimination, and metabolism of electrophilic substances (electrophiles) in the nervous system. Since the first report of the endogenous production of reactive persulfide species in cells, such as cysteine persulfides (CysSSH), these reactive species have been a topic of extreme interest in the field of redox biology; persulfides/polysulfides possess unique chemical properties and are involved in multiple cellular functions. Recent Advances: Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and their derivatives during stress responses, as well as by exogenous electrophiles, including compounds in foods and environmental pollutants, such as methylmercury (MeHg). Among diverse electrophiles that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) possesses unique redox properties, of which the biosynthetic pathway, signaling mechanism, and metabolism in cells have been elucidated. Critical Issues: Persulfides, such as CysSSH, that are endogenously produced are critically involved in 8-nitro-cGMP metabolism. Exposure of neurons to the exogenous neurotoxicant, MeHg, causes severe neurodegeneration via disruption of persulfide-dependent 8-nitro-cGMP metabolism. Future Directions: Accumulating evidence indicates that persulfides are involved in various cellular functions under physiological and pathological conditions. These new aspects of redox biology related to persulfides may be frontiers of cell research, medical and clinical investigations of neurodegenerative diseases, as well as other fields. 8-Nitro-cGMP-mediated signaling and its persulfide-dependent metabolism in cells could, therefore, be potential targets for drug development, which may lead to the discovery of new therapeutic agents for many diseases, including neurodegenerative diseases.


Assuntos
Homeostase , Neurônios/metabolismo , Oxirredução , Transdução de Sinais , Sulfetos/metabolismo , Suscetibilidade a Doenças , Redes e Vias Metabólicas , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Cardiovasc Res ; 116(1): 51-62, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31372656

RESUMO

AIMS: Under hypoxic conditions, nitrite (NO2-) can be reduced to nitric oxide (NO) eliciting vasorelaxation. However, nitrite also exerts vasorelaxant effects of potential therapeutic relevance under normal physiological conditions via undetermined mechanisms. We, therefore, sought to investigate the mechanism(s) by which nitrite regulates the vascular system in normoxia and, specifically, whether the biological effects are a result of NO generation (as in hypoxia) or mediated via alternative mechanisms involving classical downstream targets of NO [e.g. effects on protein kinase G1α (PKG1α)]. METHODS AND RESULTS: Ex vivo myography revealed that, unlike in thoracic aorta (conduit vessels), the vasorelaxant effects of nitrite in mesenteric resistance vessels from wild-type (WT) mice were NO-independent. Oxidants such as H2O2 promote disulfide formation of PKG1α, resulting in NO- cyclic guanosine monophosphate (cGMP) independent kinase activation. To explore whether the microvascular effects of nitrite were associated with PKG1α oxidation, we used a Cys42Ser PKG1α knock-in (C42S PKG1α KI; 'redox-dead') mouse that cannot transduce oxidant signals. Resistance vessels from these C42S PKG1α KI mice were markedly less responsive to nitrite-induced vasodilation. Intraperitoneal (i.p.) bolus application of nitrite in conscious WT mice induced a rapid yet transient increase in plasma nitrite and cGMP concentrations followed by prolonged hypotensive effects, as assessed using in vivo telemetry. In the C42S PKG1α KI mice, the blood pressure lowering effects of nitrite were lower compared to WT. Increased H2O2 concentrations were detected in WT resistance vessel tissue challenged with nitrite. Consistent with this, increased cysteine and glutathione persulfide levels were detected in these vessels by mass spectrometry, matching the temporal profile of nitrite's effects on H2O2 and blood pressure. CONCLUSION: Under physiological conditions, nitrite induces a delayed and long-lasting blood pressure lowering effect, which is NO-independent and occurs via a new redox mechanism involving H2O2, persulfides, and PKG1α oxidation/activation. Targeting this novel pathway may provide new prospects for anti-hypertensive therapy.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Peróxido de Hidrogênio/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Nitrito de Sódio/farmacologia , Sulfetos/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Proteína Quinase Dependente de GMP Cíclico Tipo I/deficiência , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Masculino , Artérias Mesentéricas/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Oxirredução , Transdução de Sinais
19.
Antioxid Redox Signal ; 33(15): 1092-1114, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547682

RESUMO

Significance: S-Persulfidation generates persulfide adducts (RSSH) on both small molecules and proteins. This process is believed to be critical in the regulation of biological functions of reactive sulfur species such as H2S, as well as in signal transduction. S-Persulfidation also plays regulatory roles in human health and diseases. Recent Advances: Some mechanisms underlying the generation of low-molecular-weight persulfides and protein S-persulfidation in living organisms have been uncovered. Some methods for the specific delivery of persulfides and the detection of persulfides in biological systems have been developed. These advances help to pave the road to better understand the functions of S-persulfidation. Critical Issues: Persulfides are highly reactive and unstable. Currently, their identification relies on trapping them by S-alkylation, but this is not always reliable due to rapid sulfur exchange reactions. Therefore, the presence, identity, and fates of persulfides in biological environments are sometimes difficult to track. Future Directions: Further understanding the fundamental chemistry/biochemistry of persulfides and development of more reliable detection methods are needed. S-Persulfidation in specific protein targets is essential in organismal physiological health and human disease states. Besides cardiovascular and neuronal systems, the roles of persulfidation in other systems need to be further explored. Contradictory results of persulfidation in biology, especially in cancer, need to be clarified.


Assuntos
Oxirredução , Processamento de Proteína Pós-Traducional , Sulfetos/química , Sulfetos/metabolismo , Suscetibilidade a Doenças , Homeostase , Humanos
20.
J Allergy Clin Immunol ; 144(4): 972-983.e14, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077687

RESUMO

BACKGROUND: Asthma-chronic obstructive pulmonary disease overlap (ACO) has frequent exacerbations and a poor quality of life and prognosis compared with those of chronic obstructive pulmonary disease alone. However, the pathogenesis of ACO has not been fully elucidated yet. OBJECTIVES: The aim of this study was to investigate nitrosative stress, which causes a redox imbalance and tissue inflammation in the airways of patients with ACO, and to evaluate the relationship between nitrosative stress and the clinical course in study subjects. METHODS: Thirty healthy subjects and 56 asthmatic patients participated in this study. The asthmatic patients were divided into 33 asthmatic patients and 23 patients with ACO. The study subjects had been followed prospectively for 2 years to evaluate the clinical course. Nitrosative stress was evaluated based on the production of 3-nitrotyrosine (3-NT) in sputum cells. RESULTS: Production of 3-NT was significantly enhanced in patients with ACO compared with that in asthmatic patients. Amounts of reactive persulfides and polysulfides, newly identified powerful antioxidants, were significantly decreased in the ACO group. Baseline levels of 3-NT were significantly correlated with the frequency of exacerbations and decrease in FEV1 adjusted by age, smoking history, and blood eosinophil count. The 3-NT-positive cells were also significantly correlated with amounts of proinflammatory chemokines and cytokines. CONCLUSIONS: These findings suggested that greater nitrosative stress occurred in the airways of patients with ACO, and the degree of nitrosative stress was correlated with an impairment in the clinical course. Nitrosative stress might be related to the pathogenesis of ACO.


Assuntos
Asma/fisiopatologia , Estresse Nitrosativo/fisiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA