Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
BMC Plant Biol ; 24(1): 366, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711037

RESUMO

BACKGROUND: Nitrogen (N) is essential for plant growth and development. In Lithocarpus polystachyus Rehd., a species known for its medicinal and food value, phlorizin is the major bioactive compound with pharmacological activity. Research has revealed a positive correlation between plant nitrogen (N) content and phlorizin synthesis in this species. However, no study has analyzed the effect of N fertilization on phlorizin content and elucidated the molecular mechanisms underlying phlorizin synthesis in L. polystachyus. RESULTS: A comparison of the L. polystachyus plants grown without (0 mg/plant) and with N fertilization (25, 75, 125, 175, 225, and 275 mg/plant) revealed that 75 mg N/plant fertilization resulted in the greatest seedling height, ground diameter, crown width, and total phlorizin content. Subsequent analysis of the leaves using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detected 150 metabolites, including 42 flavonoids, that were differentially accumulated between the plants grown without and with 75 mg/plant N fertilization. Transcriptomic analysis of the L. polystachyus plants via RNA sequencing revealed 162 genes involved in flavonoid biosynthesis, among which 53 significantly differed between the N-treated and untreated plants. Fertilization (75 mg N/plant) specifically upregulated the expression of the genes phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and phlorizin synthase (PGT1) but downregulated the expression of trans-cinnamate 4-monooxygenase (C4H), shikimate O-hydroxycinnamoyltransferase (HCT), and chalcone isomerase (CHI), which are related to phlorizin synthesis. Finally, an integrated analysis of the transcriptome and metabolome revealed that the increase in phlorizin after N fertilization was consistent with the upregulation of phlorizin biosynthetic genes. Quantitative real-time PCR (qRT‒PCR) was used to validate the RNA sequencing data. Thus, our results indicated that N fertilization increased phlorizin metabolism in L. polystachyus by regulating the expression levels of the PAL, PGT1, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase (C3'H), C4H, and HCT genes. CONCLUSIONS: Our results demonstrated that the addition of 75 mg/plant N to L. polystachyus significantly promoted the accumulation of flavonoids, including phlorizin, and the expression of flavonoid synthesis-related genes. Under these conditions, the genes PAL, 4CL, and PGT1 were positively correlated with phlorizin accumulation, while C4H, CHI, and HCT were negatively correlated with phlorizin accumulation. Therefore, we speculate that PAL, 4CL, and PGT1 participate in the phlorizin pathway under an optimal N environment, regulating phlorizin biosynthesis. These findings provide a basis for improving plant bioactive constituents and serve as a reference for further pharmacological studies.


Assuntos
Fertilizantes , Metaboloma , Nitrogênio , Florizina , Transcriptoma , Nitrogênio/metabolismo , Metaboloma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Espectrometria de Massas em Tandem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731810

RESUMO

Dihydrochalcones (DHCs) constitute a specific class of flavonoids widely known for their various health-related advantages. Melatonin (MLT) has received attention worldwide as a master regulator in plants, but its roles in DHC accumulation remain unclear. Herein, the elicitation impacts of MLT on DHC biosynthesis were examined in Lithocarpus litseifolius, a valuable medicinal plant famous for its sweet flavor and anti-diabetes effect. Compared to the control, the foliar application of MLT significantly increased total flavonoid and DHC (phlorizin, trilobatin, and phloretin) levels in L. litseifolius leaves, especially when 100 µM MLT was utilized for 14 days. Moreover, antioxidant enzyme activities were boosted after MLT treatments, resulting in a decrease in the levels of intracellular reactive oxygen species. Remarkably, MLT triggered the biosynthesis of numerous phytohormones linked to secondary metabolism (salicylic acid, methyl jasmonic acid (MeJA), and ethylene), while reducing free JA contents in L. litseifolius. Additionally, the flavonoid biosynthetic enzyme activities were enhanced by the MLT in leaves. Multiple differentially expressed genes (DEGs) in RNA-seq might play a crucial role in MLT-elicited pathways, particularly those associated with the antioxidant system (SOD, CAT, and POD), transcription factor regulation (MYBs and bHLHs), and DHC metabolism (4CL, C4H, UGT71K1, and UGT88A1). As a result, MLT enhanced DHC accumulation in L. litseifolius leaves, primarily by modulating the antioxidant activity and co-regulating the physiological, hormonal, and transcriptional pathways of DHC metabolism.


Assuntos
Chalconas , Regulação da Expressão Gênica de Plantas , Melatonina , Reguladores de Crescimento de Plantas , Folhas de Planta , Folhas de Planta/metabolismo , Folhas de Planta/genética , Chalconas/metabolismo , Melatonina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica , Flavonoides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo
3.
In Vivo ; 38(3): 1182-1191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688626

RESUMO

BACKGROUND/AIM: Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and management of it is still a challenge. The present investigation assessed the potential preventive effect of phlorizin on rats with RA. MATERIALS AND METHODS: A total of 40 healthy Wistar rats were used for this study. Bovine type II collagen and Freund's incomplete adjuvant (1:1 and 1 mg/ml) were administered on days 1 and 8 of the protocol to induce RA in rats; treatment with phlorizin at 60 or 120 mg/kg was started after the 4th week of the protocol, and its effect on inflammation, level of inflammatory cytokines, and expression of proteins were estimated in RA rats. Moreover, an in vitro study was performed on fibroblast-like synoviocytes (FLSs), and the effects of phlorizin on proliferation, apoptosis, and expression of the mechanistic target of rapamycin kinase pathway protein after stimulating these cells with tumor necrosis factor α (TNF-α) were estimated. RESULTS: The data obtained from the study indicate that phlorizin has the potential to mitigate inflammation and enhance weight management in rats with RA induced by bovine type II collagen (CII). The level of inflammatory cytokines in the serum and the expression of protein kinase B (AKT), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and mechanistic target of rapamycin kinase (mTOR) proteins in the joint tissue were reduced in phlorizin-treated rats with RA. In this investigation, phlorizin was shown to reverse the histological abnormalities in the joint tissue of rats with RA. The in-vitro study showed that phlorizin reduced proliferation and had no apoptotic effect on TNF-α-stimulated FLSs. Expression of AKT, PI3K, and mTOR proteins was also down-regulated in phlorizin-treated TNF-α-stimulated FLSs. CONCLUSION: Phlorizin protects against inflammation and reduces injury to synovial tissues in RA by modulating the AKT/PI3K/mTOR pathway.


Assuntos
Artrite Reumatoide , Hiperplasia , Inflamação , Florizina , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Serina-Treonina Quinases TOR/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Florizina/farmacologia , Inflamação/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Modelos Animais de Doenças , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Ratos Wistar , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Int Immunopharmacol ; 133: 111727, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636369

RESUMO

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease and management of it still a challenge. Given report evaluates protective effect of phlorizin on RA and also postulates the molecular mechanism of its action. Bovine type II collagen (CIA) and Freund's incomplete adjuvant (1:1 and 1 mg/ml) was administered on 1st and 8th day of protocol to induce RA in rats and treatment with phlorizin 60 and 120 mg/kg was started after 4th week of protocol. Level of inflammatory cytokines and expression of proteins were estimated in phlorizin treated RA rats. Moreover in-vitro study was performed on Fibroblast-like synoviocytes (FLSs) and effect of phlorizin was estimated on proliferation, apoptosis and expression of mTOR pathway protein after stimulating these cell lines with Tumour Necrosis Factor alpha (TNF-α). Data of study suggest that phlorizin reduces inflammation and improves weight in CIA induced RA rats. Level of inflammatory cytokines in the serum and expression of Akt/PI3K/mTOR proteins in the join tissue was reduced in phlorizin treated RA rats. Phlorizin also reported to reverse the histopathological changes in the joint tissue of RA rats. In-vitro study supports that phlorizin reduces proliferation and no apoptotic effect on TNF-α stimulated FLSs. Expression of Akt/PI3K/mTOR proteins also downregulated in phlorizin treated TNF-α stimulated FLSs. In conclusion, phlorizin protects inflammation and reduces injury to the synovial tissues in RA, as it reduces autophagy by regulating Akt/PI3K/mTOR pathway.


Assuntos
Artrite Experimental , Artrite Reumatoide , Hiperplasia , Florizina , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Transdução de Sinais/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/patologia , Hiperplasia/tratamento farmacológico , Ratos , Florizina/farmacologia , Florizina/uso terapêutico , Citocinas/metabolismo , Masculino , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ratos Wistar , Células Cultivadas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
J Agric Food Chem ; 72(17): 9906-9914, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625103

RESUMO

Phlorizin (PHZ) is one of the main pharmacologically active ingredients in Lithocarpus polystachyus. We have previously shown that PHZ inhibits the replication of bovine viral diarrhea virus (BVDV), but the exact antiviral mechanism, especially in vivo, is still unknown. Here, we further confirm that PHZ has good protective effects in BVDV-infected mice. We analyzed BVDV-induced CD3+, CD4+, and CD8+ T cells among peripheral blood lymphocytes and found that PHZ significantly restored their percentage. Metagenomic analyses revealed that PHZ markedly improved the richness and diversity of intestinal microbiota and increased the abundance of potentially health-related microbes (families Lachnosipiraceae, Ruminococcaceae, and Oscillospiraceae). Specifically, the relative abundance of short chain fatty acid (SCFA)-producing bacteria, including Lachnospiraceae_UCG-006, unclassified_f_Ruminococcaceae, Oscillibacter, Intestinimonas, Blautia, and Lachnoclostridium increased significantly after PHZ treatment. Interestingly, BVDV-infected mice that received fecal microbiota from PHZ-treated mice (PHZ-FMT) had a significantly lower viral load in the duodenum and jejunum than untreated mice. Pathological lesions of duodenum and jejunum were also greatly reduced in the PHZ-FMT group, confirming a significant antiviral effect. These findings show that gut microbiota play an important role in PHZ's antiviral activity and suggest that their targeted intervention might be a promising endogenous strategy to prevent and control BVDV.


Assuntos
Bactérias , Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Bovinos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/administração & dosagem , Fezes/microbiologia , Fezes/virologia , Feminino , Camundongos Endogâmicos BALB C , Masculino
6.
Nutrients ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613035

RESUMO

Lactose intolerance, which affects about 65-75% of the world's population, is caused by a genetic post-weaning deficiency of lactase, the enzyme required to digest the milk sugar lactose, called lactase non-persistence. Symptoms of lactose intolerance include abdominal pain, bloating and diarrhea. Genetic variations, namely lactase persistence, allow some individuals to metabolize lactose effectively post-weaning, a trait thought to be an evolutionary adaptation to dairy consumption. Although lactase non-persistence cannot be altered by diet, prebiotic strategies, including the consumption of galactooligosaccharides (GOSs) and possibly low levels of lactose itself, may shift the microbiome and mitigate symptoms of lactose consumption. This review discusses the etiology of lactose intolerance and the efficacy of prebiotic approaches like GOSs and low-dose lactose in symptom management.


Assuntos
Intolerância à Lactose , Humanos , Intolerância à Lactose/genética , Lactose , Lactase/genética , Dor Abdominal , Evolução Biológica , Prebióticos
7.
Nutrients ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542719

RESUMO

Previous research has found that milk is associated with a decreased risk of colorectal cancer (CRC). However, it is unclear whether the milk digestion by the enzyme lactase-phlorizin hydrolase (LPH) plays a role in CRC susceptibility. Our study aims to investigate the direct causal relationship of CRC risk with LPH levels by applying a two-sample Mendelian Randomization (MR) strategy. Genetic instruments for LPH were derived from the Fenland Study, and CRC-associated summary statistics for these instruments were extracted from the FinnGen Study, PLCO Atlas Project, and Pan-UK Biobank. Primary MR analyses focused on a cis-variant (rs4988235) for LPH levels, with results integrated via meta-analysis. MR analyses using all variants were also undertaken. This analytical approach was further extended to assess CRC subtypes (colon and rectal). Meta-analysis across the three datasets illustrated an inverse association between genetically predicted LPH levels and CRC risk (OR: 0.92 [95% CI, 0.89-0.95]). Subtype analyses revealed associations of elevated LPH levels with reduced risks for both colon (OR: 0.92 [95% CI, 0.89-0.96]) and rectal cancer (OR: 0.92 [95% CI, 0.87, 0.98]). Consistency was observed across varied analytical methods and datasets. Further exploration is warranted to unveil the underlying mechanisms and validate LPH's potential role in CRC prevention.


Assuntos
Neoplasias Colorretais , Lactase-Florizina Hidrolase , Humanos , Lactase-Florizina Hidrolase/genética , Análise da Randomização Mendeliana , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/prevenção & controle
8.
J Agric Food Chem ; 72(9): 4703-4725, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349207

RESUMO

Maternal obesity increases the risk of obesity and metabolic disorders (MDs) in offspring, which can be mediated by the gut microbiota. Phlorizin (PHZ) can improve gut dysbiosis and positively affect host health; however, its transgenerational metabolic benefits remain largely unclear. This study aimed to investigate the potential of maternal PHZ intake in attenuating the adverse impacts of a maternal high-fat diet on obesity-related MDs in dams and offspring. The results showed that maternal PHZ reduced HFD-induced body weight gain and fat accumulation and improved glucose intolerance and abnormal lipid profiles in both dams and offspring. PHZ improved gut dysbiosis by promoting expansion of SCFA-producing bacteria, Akkermansia and Blautia, while inhibiting LPS-producing and pro-inflammatory bacteria, resulting in significantly increased fecal SCFAs, especially butyric acid, and reduced serum lipopolysaccharide levels and intestinal inflammation. PHZ also promoted intestinal GLP-1/2 secretion and intestinal development and enhanced gut barrier function by activating G protein-coupled receptor 43 (GPR43) in the offspring. Antibiotic-treated mice receiving FMT from PHZ-regulated offspring could attenuate MDs induced by receiving FMT from HFD offspring through the gut microbiota to activate the GPR43 pathway. It can be regarded as a promising functional food ingredient for preventing intergenerational transmission of MDs and breaking the obesity cycle.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Obesidade Materna , Humanos , Animais , Camundongos , Feminino , Gravidez , Florizina , Disbiose , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/etiologia , Doenças Metabólicas/prevenção & controle , Lipopolissacarídeos , Camundongos Endogâmicos C57BL
9.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338482

RESUMO

Phlorizin, as a flavonoid from a wide range of sources, is gradually becoming known for its biological activity. Phlorizin can exert antioxidant effects by regulating the IL-1ß/IKB-α/NF-KB signaling pathway. At the same time, it exerts its antibacterial activity by reducing intracellular DNA agglutination, reducing intracellular protein and energy synthesis, and destroying intracellular metabolism. In addition, phlorizin also has various pharmacological effects such as antiviral, antidiabetic, antitumor, and hepatoprotective effects. Based on domestic and foreign research reports, this article reviews the plant sources, extraction, and biological activities of phlorizin, providing a reference for improving the clinical application of phlorizin.


Assuntos
Glucosídeos , Florizina , Florizina/farmacologia , Florizina/metabolismo , Antioxidantes/farmacologia , Flavonoides , Hipoglicemiantes/farmacologia
10.
Int Immunopharmacol ; 126: 111241, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984253

RESUMO

BACKGROUND: Sepsis is a systemic inflammatory syndrome that can lead to multiple organ dysfunction and life-threatening complications. Sepsis-induced myocardial dysfunction (SIMD) has been confirmed to be present in half of patients with septic shock, increasing their mortality rate to 70-90%. The pathogenesis of SIMD is complex, and no specific clinical treatment has yet been developed. Caloric restriction mimetics (CRM), compounds that simulate the biochemical and functional properties of CR, can improve cardiovascular injury by activating autophagy. This study investigated the effect of a new type of CRM which can induce hypoxia, the SGLT nonspecific inhibitor phlorizin on SIMD. MATERIALS AND METHODS: In vivo, phlorizin was administered at 1 mg/kg/day intragastrically for 28 days. In vitro, AC16 was treated with 120 µM phlorizin for 48 h. Echocardiography was used to assess cardiac function. Myocardial injury markers were detected in serum and cell supernatant. Western blotting was employed to detect changed proteins associated with apoptosis and autophagy. Immunofluorescence, immunohistochemistry, co-immunoprecipitation, molecular docking, and other methods were also used to illustrate cellular changes. RESULTS: In vivo, phlorizin significantly improved the survival rate and cardiac function after sepsis injury, reduced markers of myocardial injury, inhibited myocardial apoptosis and oxidative stress, and promoted autophagy. In vitro, phlorizin alleviated the apoptosis of AC16, as well as inhibited oxidative stress and apoptotic enzyme activity. Phlorizin acts on autophagy at multiple sites through low energy (activation of AMPK) and hypoxia (release of Beclin-1 by Hif-1α/Bnip3 axis), promoting the formation and degradation of autophagosomes. CONCLUSION: We indicated for the first time that phlorizin could inhibit glucose uptake via GLUT-1 and conforms to the metabolic characteristics of CRM, it can induce the hypoxic transcriptional paradigm. In addition, it inhibits apoptosis and improves SIMD by promoting autophagy generation and unobstructing autophagy flux. Moreover, it affects autophagy by releasing Beclin-1 through the Hif-1α/Bnip3 axis.


Assuntos
Autofagia , Miócitos Cardíacos , Florizina , Sepse , Florizina/farmacologia , Hipóxia , Miócitos Cardíacos/efeitos dos fármacos , Sepse/complicações , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Restrição Calórica , Coração/efeitos dos fármacos , Cardiotônicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Apoptose
11.
Food Chem ; 440: 138240, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150907

RESUMO

As ubiquitous components among fruits, polyphenols, including flavonoids and phenolic acids, are somewhat embarrassed on their health benefits but low bioavailability, triggering a hotspot on their interaction with microbiota. Due to its structural characteristics similar to flavonoids and phenolic acids, dihydrochalcone phlorizin (PHZ) was selected as a reference, to illustrate its step-by-step metabolic fate associated with microbiota. The results confirmed that the metabolic flux of PHZ starts with its conversion to phloretin (PHT), sequentially followed by the formation of 3-(4-hydroxyphenyl) propionic acid (PHA), and 4-hydroxyphenylacetic acid (4-HPAA). Catabolic characteristics was comparatively elucidated by introducing apparent and potential kinetics. Besides, coupling catabolic processes with microbial changes suggested several potential bacteria involving in PHZ metabolism, as well as those regulated by PHZ and its metabolites. In particular, seven strains from Lactobacillus were selectively isolated and confirmed to be essential for deglycosylation of PHZ, implying a potential synergistic effect between PHZ and Lactobacillus.


Assuntos
Microbioma Gastrointestinal , Hidroxibenzoatos , Florizina , Prebióticos , Polifenóis/metabolismo , Flavonoides/metabolismo
12.
Heliyon ; 9(11): e21217, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027628

RESUMO

The specific role of phlorizin (PHL), which has antioxidant, anti-inflammatory, hypoglycemic, antiarrhythmic and antiaging effects, on myocardial fibrosis (MF) and the related pharmacological mechanisms remain unknown. The objective of this study was to determine the protective actions of PHL on isoprenaline (ISO)-induced MF and its molecular mechanisms in mice. PHL was administered at 100 and 200 mg/kg for 15 consecutive days with a subcutaneous injection of ISO (10 mg/kg). MF was induced by ISO and alleviated by treatment with PHL, as shown by reduced fibrin accumulation in the myocardial interstitium and decreased levels of myocardial enzymes, such as creatinine kinase-MB, lactate dehydrogenase, and aspartate transaminase. In addition, PHL significantly decreased the expression of the fibrosis-related factors alpha smooth muscle actin, collagen I, and collagen III induced by ISO. The generation of intracellular reactive oxygen species induced by ISO was attenuated after PHL treatment. The malondialdehyde level was reduced, whereas the levels of superoxide dismutase, catalase, and glutathione were elevated with PHL administration. Moreover, compared to ISO, the level of Bcl-2 was increased and the level of Bax protein was decreased in the PHL groups. PHL relieved elevated TNF-α, IL-1ß, and IL-18 levels as well as cardiac mitochondrial damage resulting from ISO. Further studies showed that PHL downregulated the high expression of hexokinase 1 (HK1), NLRP3, ASC, Caspase-1, and GSDMD-N caused by ISO. In conclusion, our findings suggest that PHL protects against ISO-induced MF due to its antioxidant, anti-apoptotic, and anti-inflammatory activities and via inhibition of pyroptosis mediated by the HK1/NLRP3 signaling pathway in vivo.

13.
J Agric Food Chem ; 71(43): 16043-16056, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856155

RESUMO

Phlorizin (PHZ) is the main active component of apple peel and presents a potential application value. In the past few years, some reports have suggested that PHZ may have antioxidant and anti-inflammatory effects. Herein, we have attempted to assess the protective effects of PHZ on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the underlying molecular mechanisms. Our results suggested that early intervention with PHZ (20, 40, and 80 mg/kg) significantly reduced the severity of DSS-induced colitis in mice, as presented by a longer colon, improved tight junction protein, decreased disease activity index, and attenuated inflammatory factors. Additionally, early intervention with + (20, 40, and 80 mg/kg) significantly inhibited ferroptosis by decreasing the surrogate ferroptosis marker levels (MDA and Iron Content). Additionally, PHZ (80 mg/kg) increased the diversity of intestinal flora in colitic mice by elevating the levels of beneficial bacteria (Lactobacillaceae and Muribaculaceae) and reducing the levels of harmful bacteria (Lachnospiraceae). This indirectly led to an increase in the amount of short-chain fatty acids. A fecal microbial transplantation (FMT) test was conducted to show that PHZ (80 mg/kg) ameliorated ulcerative colitis (UC) by regulating gut dysbiosis. In conclusion, early intervention with PHZ decreased DSS-induced colitis in mice by preserving their intestinal barrier and regulating their intestinal flora.


Assuntos
Colite Ulcerativa , Colite , Ferroptose , Microbioma Gastrointestinal , Animais , Camundongos , Florizina , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
14.
J Mass Spectrom ; 58(8): e4964, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37464563

RESUMO

Phlorizin (PRZ) is a natural product that belongs to a class of dihydrochalcones. The unique pharmacological property of PRZ is to block glucose absorption or reabsorption through specific and competitive inhibitors of the sodium/glucose cotransporters (SGLTs) in the intestine (SGLT1) and kidney (SGLT2). This results in glycosuria by inhibiting renal reabsorption of glucose and can be used as an adjuvant treatment for type 2 diabetes. The pharmacokinetic profile, metabolites of the PRZ, and efficacy of metabolites towards SGLTs are unknown. Therefore, the present study on the characterization of hitherto unknown in vivo metabolites of PRZ and pharmacokinetic profiling using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) and accurate mass measurements is undertaken. Plasma, urine, and feces samples were collected after oral administration of PRZ to Sprague-Dawley rats to identify in vivo metabolites. Furthermore, in silico efficacy of the identified metabolites was evaluated by docking study. PRZ at an intraperitoneal dose of 400 mg/kg showed maximum concentration in the blood to 439.32 ± 8.84 ng/mL at 1 h, while phloretin showed 14.38 ± 0.33 ng/mL at 6 h. The pharmacokinetic profile of PRZ showed that the maximum concentration lies between 1 and 2 h after dosing. Decreased blood glucose levels and maximum excretion of glucose in the urine were observed when the PRZ and metabolites were observed in plasma. The identification and characterization of PRZ metabolites by LC/ESI/MS/MS further revealed that the phase I metabolites of PRZ are hydroxy (mono-, di-, and tri-) and reduction. Phase II metabolites are O-methylated, O-acetylated, O-sulfated, and glucuronide metabolites of PRZ. Further docking study revealed that the metabolites diglucuronide metabolite of mono-hydroxylated PRZ and mono-glucuronidation of PRZ could be considered novel inhibitors of SGLT1 and SGLT2, respectively, which show better binding affinities than their parent compound PRZ and the known inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Ratos , Animais , Ratos Sprague-Dawley , Hipoglicemiantes/farmacologia , Espectrometria de Massas em Tandem/métodos , Transportador 2 de Glucose-Sódio , Florizina/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Glucose/metabolismo , Sódio , Cromatografia Líquida de Alta Pressão/métodos
15.
Life Sci ; 322: 121668, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023949

RESUMO

AIMS: The rising prevalence of type 2 diabetes mellitus (T2DM) and accompanying insulin resistance is alarming globally. Natural and synthetic agonists of PPARγ are potentially attractive candidates for diabetics and are known to efficiently reverse adipose and hepatic insulin resistance, but related side effects and escalating costs are the causes of concern. Therefore, targeting PPARγ with natural ligands is advantageous and promising approach for the better management of T2DM. The present research aimed to assess the antidiabetic potential of phenolics Phloretin (PTN) and Phlorizin (PZN) in type 2 diabetic mice. MAIN METHODS: In silico docking was performed to check the effect of PTN and PZN on PPARγ S273-Cdk5 interactions. The docking results were further validated in preclinical settings by utilizing a mice model of high fat diet-induced T2DM. KEY FINDINGS: Computational docking and further MD-simulation data revealed that PTN and PZN inhibited the activation of Cdk5, thereby blocking the phosphorylation of PPARγ. Our in vivo results further demonstrated that PTN and PZN administration significantly improved the secretory functions of adipocytes by increasing adiponectin and reducing inflammatory cytokine levels, which ultimately reduced the hyperglycaemic index. Additionally, combined treatment of PTN and PZN decreased in vivo adipocyte expansion and increased Glut4 expression in adipose tissues. Furthermore, PTN and PZN treatment reduced hepatic insulin resistance by modulating lipid metabolism and inflammatory markers. SIGNIFICANCE: In summary, our findings strongly imply that PTN and PZN are candidates as nutraceuticals in the management of comorbidities related to diabetes and its complications.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/fisiologia , PPAR gama/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Florizina/farmacologia , Florizina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Floretina/farmacologia , Floretina/uso terapêutico , Obesidade
16.
Biomedicines ; 11(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672652

RESUMO

The isolation of phlorizin from the bark of an apple tree in 1835 led to a flurry of research on its inhibitory effect on glucose transporters in the intestine and kidney. Using phlorizin as a prototype drug, antidiabetic agents with more selective inhibitory activity towards glucose transport at the kidney have subsequently been developed. In contrast, its hydrolysis product in the body, phloretin, which is also found in the apple plant, has weak antidiabetic properties. Phloretin, however, displays a range of pharmacological effects including antibacterial, anticancer, and cellular and organ protective properties both in vitro and in vivo. In this communication, the molecular basis of its anti-inflammatory mechanisms that attribute to its pharmacological effects is scrutinised. These include inhibiting the signalling pathways of inflammatory mediators' expression that support its suppressive effect in immune cells overactivation, obesity-induced inflammation, arthritis, endothelial, myocardial, hepatic, renal and lung injury, and inflammation in the gut, skin, and nervous system, among others.

17.
Food Chem ; 409: 135326, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36610226

RESUMO

Phloretin (PRT), phlorizin (PRZ), and ferulic acid (FEA) prevalent in apples are unstable and less soluble in water, which can be improved by cyclodextrin (CD) encapsulation. This study aimed to provide atomistic insights of ß-CD-PRT (1), ß-CD-PRZ (2), and α-CD-FEA (3) complexes. Single-crystal X-ray diffraction (XRD) revealed that one PRZ (2) and one FEA (3) insert the aromatic B-ring and C=C-C=O(O) group respectively into the ß-CD (2) and α-CD (3) cavities, whereas a half-occupied PRT (1) inserts the B-ring across the ß-CD cavity. The induced-fit process yielded thermodynamically stable complexes 2 > 1 > 3, in agreement with the density functional theory (DFT)-optimized structures with the corresponding number of intermolecular OH···O H-bonds (7 > 3 > 1). Perpendicular conformations of the pharmaceutically active forms of PRT (1) and PRZ (2) are first observed crystallographically. This study confirmed the potential applications of CDs as molecular stabilizers and aqueous solubilizers for the improved bioavailability and efficient delivery of food bioactive compounds.


Assuntos
Ciclodextrinas , Florizina , Polifenóis , Cristalografia por Raios X
18.
J Ethnopharmacol ; 302(Pt A): 115870, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36341819

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rubus idaeus Linnaeus (RI) is a Chinese herbal medicine that has been widely used in China for a long time to reinforce the kidney, nourish the liver, improve vision, and arrest polyuria. AIM OF THE STUDY: This work aims to evaluate the recent progress of the chemical composition, pharmacological activity, pharmacokinetics, metabolism, and quality control and of Rubus idaeus, which focuses on the insufficiency of existing research and will shed light on future studies of Rubus idaeus. METHODS: Literatures about "Rubus idaeus","Red raspberry" and "Fupenzi"are retrieved by browsing the database, such as Web of Science (http://www.webofknowledge.com/wos), Pubmed (https://pubmed.ncbi.nlm.nih.gov/), CNKI (http://www.cnki.net/), and Wanfang Data (http://www.wanfangdata.com.cn). In addition, related textbooks and digital documents are interrogated to provide a holistic and critical review of the topic. The period of the literature covered from 1981 to 2022. RESULTS: Approximately 194 compounds have been isolated from Rubus idaeus, which is rich in phenols, terpenoids, alkaloids, steroids, and fatty acids. Numerous investigations have demonstrated that Rubus idaeus exhibits many pharmacological activities, including hypoglycemic and hypolipidemic, anti-Alzheimer effect, anti-osteoporosis, hepatoprotective, anti-cancer, neuroprotective, anti-bacteria and skin care, etc. However, it is worth noting that most of the research is not associated with the conventional effect, such as reducing urination and treating opacity of the cornea. CONCLUSION: The effectiveness of Rubus idaeus has been proved by its long-term clinical application. The research on the pharmacological activity of Rubus idaeus has flourished. In many pharmacological experiments, only the high-dose group can achieve the corresponding efficacy, so the efficacy of Rubus idaeus needs to be further interrogated. Meanwhile, the relationship between pharmacological activity and specific compounds of Rubus idaeus has not been clarified yet. Last but not least, studies involving toxicology and pharmacokinetics are very limited. Knowledge of bioavailability and toxicological behavior of Rubus idaeus can help understand the herb's pharmacodynamic and safety profile.


Assuntos
Etnobotânica , Rubus , Etnofarmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Controle de Qualidade , Fitoterapia
19.
Food Chem ; 404(Pt A): 134610, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36257271

RESUMO

Tyrosinase-catalyzed synthesis of soy 7S/11S-phlorizin conjugates was performed, and the reaction sites, conformation alterations and functional properties of complexes were evaluated using proteomic, in combination with multispectral technologies. Phlorizin was conjugated to 7S/11S primarily via residues of Lys, Cys, His and Arg residues. The phlorizin binding equivalents and decreased contents of free and total sulfhydryl groups and free amino groups confirmed the covalent interaction in the 7S/11S-phlorizin complexes. Conjugation with phlorizin promoted the conversion of α-helix to ß-sheet and ß-turn, with simultaneous transformation of the microenvironments around Trp and Tyr residues to hydrophilic and hydrophobic microenvironments, respectively, and lowering of the surface hydrophobicity of 7S/11S. The DPPH and ABTS radical scavenging abilities and α-glucosidase inhibitory activities of 7S/11S were increased by three-, two- and three-fold after the covalent binding of phlorizin. The study provided an ideal tyrosinase-catalyzed approach to fabricate custom-tailored nutritional soy protein-polyphenol products.


Assuntos
Globulinas , Proteínas de Soja , Proteínas de Soja/química , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Monofenol Mono-Oxigenase/metabolismo , Florizina , Antígenos de Plantas/química , Proteômica , Sítios de Ligação , Catálise
20.
Perit Dial Int ; 43(2): 145-150, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35188009

RESUMO

INTRODUCTION: Glucose absorption during peritoneal dialysis (PD) is commonly assumed to occur via paracellular pathways. We recently showed that SGLT2 inhibition did not reduce glucose absorption in experimental PD, but the potential role of glucose transport into cells is still unclear. Here we sought to elucidate the effects of phlorizin, a non-selective competitive inhibitor of sodium glucose co-transporters 1 and 2 (SGLT1 and SGLT2), in an experimental rat model of PD. METHODS: A 120-min PD dwell was performed in 12 anesthetised Sprague-Dawley rats using 1.5% glucose fluid with a fill volume of 20 mL with (n = 6) or without (n = 6) intraperitoneal phlorizin (50 mg/L). Several parameters for peritoneal water and solute transport were monitored during the treatment. RESULTS: Phlorizin markedly increased the urinary excretion of glucose, lowered plasma glucose and increased plasma creatinine after PD. Median glucose diffusion capacity at 60 min was significantly lower (p < 0.05) being 196 µL/min (IQR 178-213) for phlorizin-treated animals compared to 238 µL/min (IQR 233-268) in controls. Median fractional dialysate glucose concentration at 60 min (D/D 0) was significantly higher (p < 0.05) in phlorizin-treated animals being 0.65 (IQR 0.63-0.67) compared to 0.61 (IQR 0.60-0.62) in controls. At 120 min, there was no difference in solute or water transport across the peritoneal membrane. CONCLUSION: Our findings indicate that a part of glucose absorption during the initial part of the dwell occurs via transport into peritoneal cells.


Assuntos
Diálise Peritoneal , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Ratos , Transporte Biológico , Soluções para Diálise/farmacologia , Glucose/metabolismo , Diálise Peritoneal/efeitos adversos , Florizina/farmacologia , Ratos Sprague-Dawley , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Água/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...