Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cancer Innov ; 3(4): e128, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38948248

RESUMO

Background: Increasing evidence has shown that connexins are involved in the regulation of tumor development, immune escape, and drug resistance. This study investigated the gene expression patterns, prognostic values, and potential mechanisms of connexins in breast cancer. Methods: We conducted a comprehensive analysis of connexins using public gene and protein expression databases and clinical samples from our institution. Connexin mRNA expressions in breast cancer and matched normal tissues were compared, and multiomics studies were performed. Results: Gap junction beta-2 mRNA was overexpressed in breast cancers of different pathological types and molecular subtypes, and its high expression was associated with poor prognosis. The tumor membrane of the gap junction beta-2 mutated group was positive, and the corresponding protein was expressed. Somatic mutation and copy number variation of gap junction beta-2 are rare in breast cancer. The gap junction beta-2 transcription level in the p110α subunit of the phosphoinositide 3-kinase mutant subgroup was higher than that in the wild-type subgroup. Gap junction beta-2 was associated with the phosphoinositide 3-kinase-Akt signaling pathway, extracellular matrix-receptor interaction, focal adhesion, and proteoglycans in cancer. Furthermore, gap junction beta-2 overexpression may be associated with phosphoinositide 3-kinase and histone deacetylase inhibitor resistance, and its expression level correlated with infiltrating CD8+ T cells, macrophages, neutrophils, and dendritic cells. Conclusions: Gap junction beta-2 may be a promising therapeutic target for targeted therapy and immunotherapy and may be used to predict breast cancer prognosis.

2.
Int Endod J ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080721

RESUMO

AIM: The purpose of this study was to investigate the role of calcium-sensing receptor (CaSR) in the angiogenic differentiation of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). METHODOLOGY: The LPS-induced hDPCs were cultured in the medium with different combinations of CaSR agonist R568 and antagonist Calhex231. The cell proliferation, migration, and angiogenic capacity were measured by Cell Counting Kit-8 (CCK-8), scratch wound healing, and tube formation assays, respectively. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were conducted to determine the gene/protein expression of CaSR, inflammatory mediators, and angiogenic-associated markers. The activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) was assessed by western blot analysis. RESULTS: The cell proliferation was elevated in response to R568 or Calhex231 exposure, but an enhanced cell migration was only found in cultures supplemented with Calhex231. Furthermore, R568 was found to potentiate the formation of vessel-like structure, up-regulated the protein expression of tumour necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and stromal cell-derived factor (SDF)-1; comparable influences were also observed in R568-stimulated cells in the presence of PI3K inhibitor LY294002. In contrast, Calhex231 obviously inhibited the tube formation and VEGF protein level, whereas promoted the production of IL-6, TNF-α, and eNOS; however, in the presence of LY294002, Calhex231 showed a significant promotion on the protein expression of CaSR, VEGF, and SDF-1. In addition, R568 exhibited a promotive action on the Akt phosphorylation, which can be reversed by LY294002. CONCLUSIONS: Our results demonstrated that CaSR can regulate the angiogenic differentiation of LPS-treated hDPCs with an involvement of the PI3K/Akt signalling pathway.

3.
Front Oncol ; 12: 891383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330484

RESUMO

Purpose: To investigate the efficacy and safety of buparlisib, an oral pan-PI3K inhibitor, in relapsed or refractory thymomas. Methods: This was a single center, single arm, open label phase II trial of buparlisib in patients with recurrent thymoma who have progressed after at least one prior line of treatment. The primary endpoint was objective response rate (complete response [CR] + partial response [PR]). Secondary endpoints included toxicity; progression free survival (PFS); overall survival (OS); disease control rate (DCR), i.e., the percentage of patients who achieve either PR or CR or stable disease [SD] for at least 4 months. Results: Between 10/13/2014 and 1/18/2017, 14 patients with stage IV disease were enrolled. Median age was 58y (23-74). 71% were females and 71% white. All patients had WHO B2 (29%) or B3 (71%) thymoma. Patients received buparlisib for a median of 4.5m (2-33). At a median follow up of 16.6m (2.4-31.3), onr patients (7%) achieved a PR. DCR was 50%. Median PFS was 11.1m (95% CI 2.9 - 18.8). Median OS, updated as of March, 2021 was 22.5m (10.7-31.3). Most common grade 3-4 adverse events related to buparlisib were dyspnea (21%), rash (14%), elevated transaminases (14%), cough (7%), pneumonitis (7%), anxiety (7%), fatigue (7%) and hyperglycemia (7%). Reasons for treatment discontinuation included progression of disease (n= 5), rash (n=4), pulmonary toxicity (n=3), sinusitis (n=1), and disseminated toxoplasmosis plus autoimmune cholangitis (n=1). As of 3/2021, 8 patients have died, 7 due to disease progression and 1 due to central nervous system toxoplasmosis and autoimmune cholangitis. Conclusion: Buparlisib showed modest activity in patients with relapsed or refractory thymomas. Further investigation of PI3K pathway targeted therapy in thymoma is warranted. (clinicaltrials.gov ID: NCT02220855). Clinical trial registration: clinicaltrials.gov, identifier (NCT02220855).

4.
Int J Oncol ; 61(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36043533

RESUMO

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that various panels showing the data from flow cytometry experiments in Figs. 2D, 5D and 6D, and certain of the tumor images shown in Fig. 8A, were strikingly similar to data appearing in different form in other articles by different authors. Owing to the fact that the contentious data in the above article had already been published, or were already under consideration for publication elsewhere, prior to its submission to International Journal of Oncology, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Oncology 53: 2715­2726, 2018; DOI: 10.3892/ijo.2018.4576].

5.
Semin Cancer Biol ; 80: 145-156, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32156637

RESUMO

Mushrooms, both edible and medicinal have received considerable attention against cancer due to their polysaccharides, polysaccharides-protein complexes and low molecular weight secondary metabolites content. Every year, millions of people die because of this disease. Existing cancer therapies are poised with questions of efficacy, toxicity and adverse effects, hence justifying the search for finding new, alternative and efficient means to fend off the disease. Mushrooms and their derived active molecules can prevent oncogenesis and tumour metastasis via directly inhibiting tumour cells growth or indirectly improving immunity functions and by acting as chemotherapy adjuvants. While the mechanisms of such effects are not fully known, the roles of the bioactive compounds on cell signaling pathways involved in the promotion and progression of the disease appear to be key, particularly in view of their role(s) in multiple cellular processes, including cell survival, proliferation, and differentiation. This review discusses the aberrant cell signaling pathways involved in inhibition of tumour cell growth as target for mushrooms and their bioactive compounds as well as the associated challenges for the molecules therein to be successfully considered as preventive/therapeutic agents against cancer.


Assuntos
Agaricales , Neoplasias , Agaricales/metabolismo , Antioxidantes/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Transdução de Sinais
6.
World Neurosurg ; 157: e223-e231, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634505

RESUMO

BACKGROUND: Although extensive reports have demonstrated the neuroprotection of sevoflurane postconditioning in cases of focal and global cerebral ischemia/reperfusion, the underlying mechanisms are not completely elucidated. This study investigated whether this effect is related to endothelial nitric oxide synthase (eNOS) and mediated by the phosphoinositide-3-kinase pathway in a rat model of hemorrhagic shock and resuscitation. METHODS: Adult male Sprague Dawley rats were subjected to hemorrhagic shock for 60 minutes and then resuscitation for 30 minutes in experimental groups. Sevoflurane postconditioning was performed at the beginning of resuscitation to completion. At 24 hours after resuscitation, the brain infarct volume was evaluated by 2,3,5-triphenyltetrazolium chloride staining. The neuronal morphological changes and apoptosis were determined by hematoxylin and eosin staining and immunohistochemistry analysis, respectively. The activity of phosphorylated Akt and eNOS was evaluated by Western blot analysis. RESULTS: Brain injuries such as the cerebral infarct volume and pathological neuronal changes as well as cell apoptosis were observed in the hippocampus after hemorrhagic shock and resuscitation. Postconditioning with 2.4% sevoflurane significantly attenuated brain injuries. Wortmannin prevented the improvements of neuronal characteristics elicited by sevoflurane postconditioning as well as the hyperactivity of eNOS and phosphorylated Akt. CONCLUSIONS: Sevoflurane postconditioning could attenuate brain injury induced by hemorrhagic shock and resuscitation, and this neuroprotective effect may be partly by upregulation of eNOS through the phosphoinositide-3-kinase/Akt signaling pathway.


Assuntos
Fármacos Neuroprotetores/administração & dosagem , Óxido Nítrico Sintase Tipo III/biossíntese , Fosfatidilinositol 3-Quinase/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Sevoflurano/administração & dosagem , Choque Hemorrágico/metabolismo , Anestésicos Inalatórios/administração & dosagem , Animais , Modelos Animais de Doenças , Pós-Condicionamento Isquêmico/tendências , Masculino , Ratos , Ratos Sprague-Dawley , Ressuscitação/tendências , Choque Hemorrágico/prevenção & controle , Choque Hemorrágico/terapia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Mol Cells ; 44(8): 613-622, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34376625

RESUMO

In vertebrate eyes, the retinal pigment epithelium (RPE) provides structural and functional homeostasis to the retina. The RPE takes up retinol (ROL) to be dehydrogenated and isomerized to 11-cis-retinaldehyde (11-cis-RAL), which is a functional photopigment in mammalian photoreceptors. As excessive ROL is toxic, the RPE must also establish mechanisms to protect against ROL toxicity. Here, we found that the levels of retinol dehydrogenases (RDHs) are commonly decreased in phosphatase tensin homolog (Pten)-deficient mouse RPE, which degenerates due to elevated ROL and that can be rescued by feeding a ROL-free diet. We also identified that RDH gene expression is regulated by forkhead box O (FOXO) transcription factors, which are inactivated by hyperactive Akt in the Pten-deficient mouse RPE. Together, our findings suggest that a homeostatic pathway comprising PTEN, FOXO, and RDH can protect the RPE from ROL toxicity.


Assuntos
PTEN Fosfo-Hidrolase/deficiência , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Retinoides/metabolismo , Oxirredutases do Álcool/metabolismo , Aldeído Desidrogenase/metabolismo , Animais , Dieta , Fatores de Transcrição Forkhead/metabolismo , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/metabolismo , Degeneração Retiniana/metabolismo , Vitamina A/metabolismo
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(1): 25-31, 2021 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-33678633

RESUMO

OBJECTIVES: Chondrocyte apoptosis is an important process in the pathogenesis of osteoarthritis. Mangiferin exerts multiple pharmacological effects such as anti-inflammatory and anti-apoptosis. However, the role of mangiferin in chondrocyte apoptosis is not clear. In this study, we aimed to explore the role of mangiferin in IL-1ß-induced chondrocyte apoptosis. METHODS: ATDC5 cells were randomly divided into a control group, a IL-1ß group, a MFN-L group, a MFN-M group, a MFN-H group and a MFN+LY294002 group. Cells in the control group were treated with IL-1ß (10 ng/mL) for 24 h; cells in the MFN-L group, the MFN-M group and the MFN-H group were pretreated with 5, 10 and 20 µmol/L mangiferin for 1 h respectively, and then they were treated with IL-1ß (10 ng/mL) for 24 h; cells in the MFN+LY294002 group were treated with LY294002 (25 µmol/L) for 1 h, then mangiferin (20 µmol/L) and IL-1ß (10 ng/mL) for 1 h and 24 h, respectively. Cell viability was detected by CCK-8 assay and cell apoptosis was measured by flow cytometry. Colorimetric assay was conducted to measure the caspase-3 activity. The protein levels of Bcl-2, Bax, and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway related proteins were detected by Western blotting. RESULTS: Compared to the control group, cell viability was significantly decreased; cell apoptosis, caspase-3 activity and Bax protein expression were significantly increased; the protein levels of Bcl-2, p-PI3K, and p-Akt were significantly decreased in the IL-1ß group (all P<0.05). Compared to the IL-1ß group, cell viability was significantly increased; cell apoptosis, caspase-3 activity and Bax protein expression were significantly decreased; the protein levels of Bcl-2, p-PI3K, and p-Akt were significantly increased in the MFN-L, the MFN-M and the MFN-H groups (all P<0.05). Compared to the MFN-M group, cell apoptosis and the protein level of Bax in the MFN+LY294002 group were significantly increased; the Bcl-2 protein expression was significantly decreased (all P<0.05). CONCLUSIONS: Mangiferin could attenuate IL-1ß-induced apoptosis of the mice chondrocytes, which is mediated by the activation of PI3K/Akt signaling pathway.


Assuntos
Condrócitos , Fosfatidilinositol 3-Quinases , Animais , Apoptose , Interleucina-1beta , Camundongos , Proteínas Proto-Oncogênicas c-akt , Xantonas
9.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-880618

RESUMO

OBJECTIVES@#Chondrocyte apoptosis is an important process in the pathogenesis of osteoarthritis. Mangiferin exerts multiple pharmacological effects such as anti-inflammatory and anti-apoptosis. However, the role of mangiferin in chondrocyte apoptosis is not clear. In this study, we aimed to explore the role of mangiferin in IL-1β-induced chondrocyte apoptosis.@*METHODS@#ATDC5 cells were randomly divided into a control group, a IL-1β group, a MFN-L group, a MFN-M group, a MFN-H group and a MFN+LY294002 group. Cells in the control group were treated with IL-1β (10 ng/mL) for 24 h; cells in the MFN-L group, the MFN-M group and the MFN-H group were pretreated with 5, 10 and 20 μmol/L mangiferin for 1 h respectively, and then they were treated with IL-1β (10 ng/mL) for 24 h; cells in the MFN+LY294002 group were treated with LY294002 (25 μmol/L) for 1 h, then mangiferin (20 μmol/L) and IL-1β (10 ng/mL) for 1 h and 24 h, respectively. Cell viability was detected by CCK-8 assay and cell apoptosis was measured by flow cytometry. Colorimetric assay was conducted to measure the caspase-3 activity. The protein levels of Bcl-2, Bax, and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway related proteins were detected by Western blotting.@*RESULTS@#Compared to the control group, cell viability was significantly decreased; cell apoptosis, caspase-3 activity and Bax protein expression were significantly increased; the protein levels of Bcl-2, p-PI3K, and p-Akt were significantly decreased in the IL-1β group (all @*CONCLUSIONS@#Mangiferin could attenuate IL-1β-induced apoptosis of the mice chondrocytes, which is mediated by the activation of PI3K/Akt signaling pathway.


Assuntos
Animais , Camundongos , Apoptose , Condrócitos , Interleucina-1beta , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Xantonas
10.
J Ethnopharmacol ; 268: 113568, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33188898

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Isolated from Uncaria rhynchophylla (U. rhynchophylla), rhynchophylline (Rhy) has been applied for treating diseases related to central nervous system such as Parkinson's disease. Nevertheless, the molecular mechanism of the neuroprotective effect has not been well interpreted. AIM OF THE STUDY: To investigate the effects of Rhy on MPTP/MPP + -induced neurotoxicity in C57BL/6 mice or PC12 cells and study the mechanisms involved. MATERIALS AND METHODS: The neuroprotective effect of Rhy on MPTP-induced neurotoxicity was evaluated by spontaneous motor activity test, as well as a test of rota-rod on a rat model of Parkinson's disease. The numbers of TH-positive neurons in the substantia nigra pars compacta (SNpc) was assessed by immunohistological. CCK-8, lactate dehydrogenase (LDH), reactive oxygen species (ROS), the concentration of intracellular calcium ([Ca2+]i) and flow cytometry analysis were performed to evaluate the pharmacological property of Rhy on 1-methyl-4-phenylpyridinium (MPP+) induced neurotoxicity in PC12 cells. Besides, LY294002, a PI3K inhibitor was employed to determine the underlying molecular signaling pathway revealing the effect of Rhy by western-blot analysis. RESULTS: The results showed that Rhy exhibited a protective effect against the MPTP-induced decrease in tyrosine hydroxylase (TH)-positive fibers in the substantia nigra at 30 mg/kg, demonstrated by the immunohistological and behavioral outcomes. Furthermore, it has been indicated that cell viability was improved and the MPP+-induced apoptosis was inhibited after the treatment of Rhy at 20 µM, which were severally analyzed by the CCK-8 and the Annexin V/propidium iodide staining method. In addition, Rhy treatment attenuated MPP+-induced up-regulation of LDH, ([Ca2+]i), and the levels of ROS. Besides, it can be revealed from the Western blot assay that LY294002, as a selective Phosphatidylinositol 3-Kinase (PI3K) inhibitor, effectively inhibited the Akt phosphorylation caused by Rhy, which suggested that Rhy showed its protective property through the activated the PI3K/Akt signaling pathway. Moreover, the Rhy-induced decreases of Bax and caspase-3 as the proapoptotic markers and the increase of Bcl-2 as the antiapoptotic marker, were blocked by LY294002 in the MPP+-treated PC12 cells. CONCLUSIONS: Rhy exerts a neuroprotective effect is partly mediated by activating the PI3K/Akt signaling pathway.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Intoxicação por MPTP/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Oxindóis/uso terapêutico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Herbicidas/toxicidade , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Oxindóis/isolamento & purificação , Oxindóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Uncaria
11.
J Int Med Res ; 48(7): 300060520926353, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32720595

RESUMO

BACKGROUND: The underlying mechanism of micro (mi)RNA-211 in bone cell apoptosis after fracture remains unclear. This study aimed to determine the effect and function of miRNA-211 in bone cell apoptosis in fracture patients. METHODS: Serum samples were collected from patients with fractures and healthy controls. Serum miR-211 expression was detected by quantitative PCR. MC3T3-E1 cells were transfected with a transforming growth factor (TGF)-ß inhibitor and phosphoinositide 3-kinase (PI3K) inhibitor. The viability of MC3T3-E1 cells was detected by the MTT assay, and apoptosis was detected by flow cytometry. Caspase-3/9 activity and the protein expression of TGF-ß, PI3K, and p-Akt were detected by western blot and immunoprecipitation. RESULTS: In the fracture group, miRNA-211 expression was significantly up-regulated compared with controls. We used miRNA-211 mimics to up-regulate miRNA-211 expression, and observed inhibited cell viability and induced apoptosis and lactate dehydrogenase (LDH) activity. miRNA-211 up-regulation also suppressed the expression of TGF-ß, PI3K, and p-Akt proteins. Conversely, miRNA-211 down-regulation increased cell viability and reduced apoptosis and LDH activity, as well as inducing the expression of TGF-ß, PI3K, and p-Akt. Inhibiting TGF-ß decreased the effect of anti-miRNA-211 on osteocyte apoptosis. CONCLUSION: Our data indicate that miRNA-211 functions via the TGF-ß/PI3K/Akt signaling pathway in patients with fractures.


Assuntos
MicroRNAs , Fosfatidilinositol 3-Quinase , Apoptose , Proliferação de Células , Humanos , MicroRNAs/genética , Osteócitos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Crescimento Transformadores
12.
Ann Transl Med ; 8(6): 336, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32355780

RESUMO

BACKGROUND: The bone-derived insulin-like growth factor I (IGF-1) and its receptor IGF-1R play a crucial role in promoting the survival and proliferation of cancer cells, and have thus been considered as prime targets for the development of novel antitumor therapeutics. METHODS: By using the MDA-MB-231BO cell line, which is the osteotropic metastatic variant of the human breast adenocarcinoma cell line MDA-MB-231, and an in vivo model of breast cancer metastasis to bone, the current study evaluated the effect of AZD3463, an IGF-1R inhibitor, used alone or in combination with zoledronic acid (ZA), on the regulation of IGF-1R associated signal pathway and treatment of bone metastases (BM). Cell proliferation and invasion were measured by methyl thiazolyl tetrazolium (MTT) and Transwell assay respectively. Apoptotic cell number was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). RESULTS: AZD3463 was shown to alleviate IGF-1R phosphorylation promoted by IGF-1 treatment in MDA-MB-231BO cells in a dose-dependent manner. In both the cells and the mouse model, 5 nM of AZD3463 stimulated cell apoptosis and suppressed proliferation on a level similar to that of 100 µM of ZA. Remarkably, the combined use of AZD3463 and ZA exhibited a synergistic effect and greater antitumor activity compared to when they were employed individually. Mechanistic investigations indicated that the apoptosis-inducing activity of AZD3463 could be associated to its role in the activation of the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. CONCLUSIONS: These findings suggested that AZD3463 could serve as a promising therapeutic molecule for treating BM in breast cancer patients, particularly when applied in conjunction with ZA or other antitumor agents.

13.
Oncol Rep ; 43(6): 2004-2016, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236620

RESUMO

Tongue cancer is one of the most common types of cancer, but its molecular etiology and pathogenesis remain unclear. The aim of the present study was to elucidate the pathogenesis of tongue cancer and investigate novel potential diagnostic and therapeutic targets. Four matched pairs of tongue cancer and paracancerous tissues were collected for RNA sequencing (RNA­Seq), and the differentially expressed genes were analyzed. The RNA­Seq data of tongue cancer tissues were further analyzed using bioinformatics and reverse transcription­quantitative PCR analysis. The sequenced reads were quantified and qualified in accordance with the analysis demands. The transcriptomes of the tongue cancer tissues and paired paracancerous tissues were analyzed, and 1,700 upregulated and 2,249 downregulated genes were identified. Gene Ontology analysis uncovered a significant enrichment in the terms associated with extracellular matrix (ECM) organization, cell adhesion and collagen catabolic processes. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that these differentially expressed genes were mainly enriched in the focal adhesion pathway, ECM­receptor interaction pathway, phosphoinositide 3­kinase (PI3K)­Akt pathway, and cell adhesion molecules. Comprehensive analyses of the gene tree and pathway network revealed that the majority of cell cycle genes were upregulated, while the majority of the genes associated with intracellular response, cell adhesion and cell differentiation were downregulated. The ECM­receptor interaction, focal adhesion kinase (FAK) and PI3K­Akt pathways were closely associated with one another and held key positions in differential signaling pathways. The ECM­receptor, FAK and PI3K­Akt signaling pathways were found to synergistically promote tongue cancer occurrence and progression, and may serve as potential diagnostic and therapeutic targets for this type of cancer.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Neoplasias da Língua/patologia , Idoso , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Estadiamento de Neoplasias , Análise de Sequência de RNA , Neoplasias da Língua/genética
14.
Life Sci ; 242: 117151, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843526

RESUMO

AIMS: Anaesthesia-related neurotoxicity in the developing brain is a controversial issue that has recently attracted much attention. Hemin plays a protective role in hypoxic and ischemic brain damage; however, its effects on sevoflurane-induced neurotoxicity remain unclear. Our aim was to investigate the mechanisms of sevoflurane neurotoxicity and potential neuroprotective roles of hemin upon sevoflurane exposure. MAIN METHODS: Hippocampi were harvested 18 h after sevoflurane exposure. Haem oxygenase 1 (HMOX1), superoxide dismutase 2 (SOD2), discs large MAGUK scaffold protein 4 (DLG4), phosphorylated Akt, Akt, cleaved caspase 3, and neuroglobin were detected by western blotting. A water maze test was used to assess learning and memory ability in P30 rats. KEY FINDINGS: Sevoflurane inhalation increased cleaved caspase 3 levels. Hemin treatment enhanced the antioxidant defence response, protecting rats from oxidative stress injury. Hemin plays its neuroprotective role via phosphoinositide 3-kinase (PI3K)/Akt signalling. A single inhalation of sevoflurane did not affect DLG4 expression, while hemin treatment did. Platform crossing increased in rats treated with hemin as well, which may be related to increased DLG4. Neuroglobin expression was not affected, suggesting that it may act upstream of PI3K/Akt signalling. SIGNIFICANCE: Our study demonstrates that hemin plays a protective role in anaesthesia-induced neurotoxicity by both inhibiting apoptosis via the PI3K/Akt pathway and increasing the expression of antioxidant enzymes, reducing oxidative damage. The results provide mechanistic insight into the effects of sevoflurane anaesthesia on the developing brain and suggest that hemin could help avoid these effects.


Assuntos
Anestésicos Inalatórios/toxicidade , Encéfalo/efeitos dos fármacos , Hemina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sevoflurano/toxicidade , Transdução de Sinais/efeitos dos fármacos , Administração por Inalação , Animais , Animais Recém-Nascidos , Western Blotting , Caspase 3/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Hipocampo/química , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Aprendizagem em Labirinto/efeitos dos fármacos , Neuroglobina/metabolismo , Ratos , Ratos Sprague-Dawley , Sevoflurano/antagonistas & inibidores , Superóxido Dismutase/metabolismo
15.
Oncol Lett ; 18(1): 617-628, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31289534

RESUMO

Cervical, endometrial and vulvar cancer are three common types of gynecological tumor that threaten the health of females worldwide. Since their underlying mechanisms and associations remain unclear, a comprehensive and systematic bioinformatics analysis is required. The present study downloaded GSE63678 from the GEO database and then performed functional enrichment analyses, including gene ontology and pathway analysis. To further investigate the molecular mechanisms underlying the three types of gynecological cancer, protein-protein interaction (PPI) analysis was performed. A biological network was generated with the guidance of the Kyoto Encyclopedia of Genes and Genomes database and was presented in Cytoscape. A total of 1,219 DEGs were identified for the three types of cancer, and 25 hub genes were revealed. Pathway analysis and the PPI network indicated that four main types of pathway participate in the mechanism of gynecological cancer, including viral infections and cancer formation, tumorigenesis and development, signal transduction, and endocrinology and metabolism. A preliminary gynecological cancer biological network was constructed. Notably, following all analysis, the phosphoinositide 3-kinase (PI3K)/Akt pathway was identified as a potential biomarker pathway. Seven pivotal hub genes (CCNA2, CDK1, CCND1, FGF2, IGF1, BCL2 and VEGFA) of the three gynecological cancer types were proposed. The seven hub genes may serve as targets in gynecological cancer for prevention and early intervention. The PI3K/Akt pathway was identified as a critical biomarker of the three types of gynecological cancer, which may serve a role in the pathogenesis. In summary, the present study provided evidence that could support the treatment of gynecologic tumors in the future.

16.
Exp Ther Med ; 18(1): 389-396, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31258677

RESUMO

The detailed pathogenesis of diabetes mellitus (DM) remains to be fully elucidated. The purpose of the present study was to explore the role of microRNA (miR)-18 in DM and its underlying mechanisms, providing novel ideas for the treatment of the disease. After inflammatory factor-mediated induction, miR-18 expression in the islet ß-cell line MIN6 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). miR-18 mimics and miR-18 inhibitor were then constructed and transfected into MIN6 cells. The mRNA levels of pro-insulin in MIN6 cells were also detected by RT-qPCR. Released insulin levels and insulin secretion function of MIN6 cells were accessed by ELISA and glucose-stimulated insulin secretion assay, respectively. Apoptosis of MIN6 cells was detected by a terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end labeling assay and western blot analysis of apoptotic proteins. The binding interaction of miR-18 and neuron navigator 1(NAV1), a constituent of the phosphoinositide 3-kinase (PI3K)/AKT pathway, was assessed using a dual-luciferase reporter gene assay. Finally, the regulatory effect of miR-18 on the PI3K/AKT pathway was determined by western blot analysis. After induction of inflammatory factors in MIN6 cells, miR-18 expression was markedly upregulated. Transfection with miR-18 mimics inhibited pro-insulin levels, as well as insulin production and secretion capacity. miR-18 knockdown partially abrogated the inhibited insulin secretion capacity induced by interleukin-1ß (IL-1ß) treatment. In addition, apoptosis of MIN6 cells was increased by miR-18 mimics. The dual-luciferase reporter gene assay confirmed the direct binding of miR-18 to NAV1. Western blot analysis suggested that miR-18 markedly inhibited the PI3K/AKT pathway in MIN6 cells. In conclusion, miR-18 expression is upregulated by IL-1ß induction in islet ß-cells. It was demonstrated that miR-18 promotes apoptosis of islet ß-cells at least partially by inhibiting NAV1 expression and insulin production via suppression of the PI3K/AKT pathway.

17.
J Endod ; 45(7): 907-916, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31126710

RESUMO

INTRODUCTION: The purpose of this study was to verify the expression of the calcium-sensing receptor (CaSR) and its role in mineral trioxide aggregate (MTA)-induced odontoblastic differentiation and mineralization in human dental pulp cells (hDPCs). METHODS: The expression of CaSR in human dental pulp tissue and hDPCs was detected using immunohistochemical and immunofluorescent assays. Then, hDPCs were cultured in specific medium supplemented with defined concentrations of MTA dilute alone or in combination with calcimimetic R-568 (a positive allosteric modulator of CaSR [Tocris Bioscience, Bristol, UK]), and cell viability was monitored by Cell Counting Kit-8 (Dojindo Molecular Technologies, Kumamoto, Japan) analysis. Alkaline phosphatase activity, alizarin red S staining, quantitative real-time polymerase chain reaction, and Western blot were used to investigate the gene/protein expression of odontoblastic-associated markers and CaSR in medium supplemented with different combinations of diluted MTA, R-568, and calcilytic Calhex 231 (a negative allosteric modulator of CaSR [Sigma-Aldrich, St Louis, MO]). RESULTS: CaSR was slightly expressed in the central pulp tissue, whereas it was strongly expressed in the odontoblast layer, plasma membrane, and cytoplasm of hDPCs. Cell Counting Kit-8 assay indicated maximum cell viability in cultures treated with 1:8 diluted MTA additives. Compared with undifferentiated controls, the cells at the early stage of odontoblastic differentiation exhibited lower CaSR protein expression. The combination of 1:8 diluted MTA with 0.1 and 1.0 µmol/L R-568 led to significantly increased cell vitality but decreased alkaline phosphatase activity and mineralized deposit formation, and this negative effect could be attenuated by 1.0 µmol/L Calhex 231 supplementation. Quantitative polymerase chain reaction results showed a significant up-regulation of RUNX2, DSPP, DMP-1, and OCN gene expression in the 1 µmol/L R-568-treated hDPCs. Western blot analysis indicated that the treatment by MTA and R-568 alone or their combination gave no clear trend on the protein levels of CaSR and dentin sialophosphoprotein, whereas Calhex 231 can increase their expressions. In addition, the up-regulation of Akt phosphorylation was observed in R-568- and Calhex 231-treated hDPCs. CONCLUSIONS: Our data indicated that CaSR is expressed in human dental pulp and hDPCs and that it can negatively or positively regulate MTA-induced mineralization of hDPCs via the phosphoinositide 3-kinase/Akt pathway in a ligand-dependent manner, suggesting a therapeutic target for modulating reparative dentin formation.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Diferenciação Celular , Polpa Dentária , Odontoblastos , Óxidos , Receptores de Detecção de Cálcio , Silicatos , Fosfatase Alcalina , Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Proliferação de Células , Células Cultivadas , Combinação de Medicamentos , Proteínas da Matriz Extracelular , Humanos , Óxidos/farmacologia , Fosfatidilinositol 3-Quinases , Receptores de Detecção de Cálcio/fisiologia , Silicatos/farmacologia
18.
Mol Nutr Food Res ; 63(10): e1801353, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30892786

RESUMO

SCOPE: Atherosclerotic cardiovascular disease is the most prevalent cause of mortality and morbidity. Fucoxanthin (FX) possesses anti-hypertensive and anti-obesity properties. However, the molecular mechanisms underlying the inhibitory effects of FX on oxidized low-density lipoprotein (oxLDL)-induced oxidative injuries in human endothelial cells are still largely unknown. This study aims to test the hypothesis that FX protects against oxLDL-induced oxidative stress by upregulating AMP-activated protein kinase (AMPK) and to explore the roles of cAMP response element binding protein (CREB) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). METHODS AND RESULTS: Human umbilical vein endothelial cells are treated with oxLDL in the presence or absence of FX. FX significantly increases AMPK phosphorylation. In addition, FX diminishes oxLDL-mediated nicotinamide adenine dinucleotide phosphate oxidase activation by inhibiting protein kinase C and subsequently inducing reactive oxygen species generation and impairing the activity of the endogenous antioxidant enzyme superoxidase dismutase. Furthermore, FX restores oxLDL-mediated dephosphorylation of phosphoinositide-3-kinase/Akt and decreases CREB and PGC-1α expression to nearly normal levels. Moreover, FX ameliorates the oxLDL-mediated suppression of mitochondrial function and apoptosis. CONCLUSION: These findings provide new insights into the possible molecular mechanisms by which FX mitigates oxLDL-induced endothelial oxidative stress and mitochondrial dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Endotélio Vascular/efeitos dos fármacos , Lipoproteínas LDL/toxicidade , Xantofilas/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Oncol Lett ; 17(2): 1896-1902, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30675253

RESUMO

Ovarian cancer is one of the most common gynecological tumors and is the second most common cause of gynecological cancer-associated mortality worldwide. Tanshinone IIA (Tan-IIA) possesses anticancer activities through inducing the apoptosis of tumor cells. The purpose of the present study was to analyze the ability of Tan-IIA to induce apoptosis of human ovarian cancer cells in vitro and in vivo, and to examine the potential mechanism underlying its activity. Western blot analysis, immunohistochemistry and flow cytometry were used to analyze the therapeutic effects of Tan-IIA on ovarian cancer. It was demonstrated that Tan-IIA significantly inhibited the growth and aggressiveness of human ovarian cancer cells. Tan-IIA significantly increased the apoptosis of human ovarian cancer cells through cleavage activation of caspases-3, caspase-8 and caspases-9. In addition, Tan-IIA treatment decreased the expression of mitochondrial-protective B-cell lymphoma 2-like protein 2 (Bcl-w) and myeloid cell leukemia-1 long (Mcl-1L) in ovarian cancer cells. Tan-IIA also reduced the expression of phosphoinositide 3-kinase (PI3K), AKT and c-Jun N-terminal kinase (JNK) in human ovarian cancer cells. A specific PI3K inhibitor (LY294002) enhanced the Tan-IIA-inhibited expression of AKT and JNK. The overexpression of PI3K negated the Tan-IIA-inhibited expression of AKT and JNK, and eliminated the Tan-IIA-induced apoptosis of human ovarian cancer cells. Additionally, the in vivo assay showed that Tan-IIA treatment inhibited the growth of ovarian cancer through increasing the apoptosis of tumor cells. In conclusion, these findings suggested that the induction of apoptosis by Tan-IIA involves the PI3K/AKT/JNK signaling pathways in ovarian cancer.

20.
J Cardiol ; 73(1): 81-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487059

RESUMO

BACKGROUND: The hypothalamic paraventricular nucleus (PVN) is the center of the regulation of autonomic nervous system functions and cardiovascular activity. Phosphoinositide-3 kinase (PI3K)-AKT pathway in PVN contributes to mediate sympathetic nerve activity and is activated in spontaneously hypertensive rats. Overactivation of the sympathetic output was considered as an important mechanism of the arrhythmias. In the present study, we aimed to explore whether targeted regulation of sympathetic activity in PVN could reduce the peripheral sympathoexcitatory and attenuate the ventricular arrhythmias (VAs) in myocardial infarction (MI) rats via PI3K-AKT pathway. METHODS: A stainless steel gauge guide cannula was stereotaxically implanted into the PVN, and 7 days later, rats were randomly divided into the following 4 groups: group A, control+dimethyl sulfoxide (DMSO); group B, control+LY294002; group C, MI surgery+DMSO; and group D, MI surgery+LY294002. Studies were conducted seven days post-MI. Myocardial function, infarct size, inducible VAs by programmed electrical stimulation, renal sympathetic nerve activity (RSNA), and protein level of PI3K and AKT were measured. RESULTS: MI increased the protein ratios of p-PI3K-to-total-PI3K and p-AKT-to-total-AKT in PVN but can be reduced by LY294002 treatment. Inhibition of sympathetic nerve activity in PVN led to a reversion in plasma norepinephrine, RSNA and inducible VAs in MI rats. CONCLUSIONS: PI3K-AKT pathway in the PVN was a main mechanism in regulating sympathetic activity and arrhythmias in MI rats. Targeted inhibition of sympathetic activity in PVN may be a potential treatment for the VAs via PI3K-AKT pathway.


Assuntos
Arritmias Cardíacas/enzimologia , Infarto do Miocárdio/enzimologia , Núcleo Hipotalâmico Paraventricular/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Nervoso Simpático/enzimologia , Animais , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Cromonas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Masculino , Morfolinas/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Miocárdio/enzimologia , Norepinefrina/sangue , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA