RESUMO
Epoxiconazole (EPO) is classified as a persistent organic pollutant due to its ability to persist in the environment for prolonged periods. Its degradation is pivotal in mitigating its environmental impact. This investigation focuses on assessing the degradation of EPO using various methodologies, namely Fenton, photo-Fenton, solar photo-Fenton, and solar photolysis, conducted in both Milli-Q water and groundwater. These experiments encompassed evaluations at both the standard pH typically used in photo-Fenton reactions and the natural pH levels inherent to the respective aqueous environments. Additionally, EPO degradation products were analyzed after a 60-min reaction. Notably, in systems utilizing groundwater, the inclusion of additional iron was unnecessary, as the naturally occurring iron content in the groundwater facilitated the intended processes. Specifically, in Milli-Q water, solar photo-Fenton demonstrated an EPO degradation efficiency of 97%. Furthermore, the substitution of Milli-Q water with groundwater in Fenton-like processes did not significantly affect the efficacy of EPO degradation. These findings underscore the potential of solar photo-Fenton as an economically viable and environmentally sustainable strategy for EPO degradation.
RESUMO
Sulfamethoxazole and metronidazole are emerging pollutants commonly found in surface water and wastewater. These compounds have a significant environmental impact, being necessary in the design of technologies for their removal. Recently, the advanced oxidation process has been proven successful in the elimination of this kind of compounds. In this sense, the present work discusses the application of UV/H2O2 and ozonation for the degradation of both molecules in single and binary systems. Experimental kinetic data from O3 and UV/H2O2 process were adequately described by a first and second kinetic model, respectively. From the ANOVA analysis, it was determined that the most statistically significant variables were the initial concentration of the drugs (0.03 mmol L-1) and the pH = 8 for UV/H2O2 system, and only the pH (optimal value of 6) was significant for degradation with O3. Results showed that both molecules were eliminated with high degradation efficiencies (88-94% for UV/H2O2 and 79-98% for O3) in short reaction times (around 30-90 min). The modeling was performed using a quadratic regression model through response surface methodology representing adequately 90 % of the experimental data. On the other hand, an artificial neural network was used to evaluate a non-linear multi-variable system, a 98% of fit between the model and experimental data was obtained. The identification of degradation byproducts was performed by high-performance liquid chromatography coupled to a time mass detector. After each process, at least four to five stable byproducts were found in the treated water, reducing the mineralization percentage to 20% for both molecules.
Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Inteligência Artificial , Peróxido de Hidrogênio/química , Qualidade da Água , Raios Ultravioleta , Oxirredução , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Ozônio/químicaRESUMO
This investigation delves into the UV photodissociation of pivotal amino acids (Alanine, Glycine, Leucine, Proline, and Serine) at 213â nm, providing insights into triplet-state deactivation pathways. Utilizing a comprehensive approach involving time-dependent density functional calculations (TD-DFT), multi-configurational methods, and ab-initio molecular dynamics (AIMD) simulations, we scrutinize the excited electronic states (T1 , T2 , and S1 ) subsequent to 213â nm excitation. Our findings demonstrate that α-carbonyl C-C bond-breaking in triplet states exhibits markedly lower barriers than in singlet states (below 5.0â kcal mol-1 ). AIMD simulations corroborate the potential involvement of triplet states in amino acid fragmentation, underscoring the significance of accounting for these states in photochemistry. Chemical bonding analyses unveil distinctive patterns for S1 and T1 states, with the asymmetric redistribution of electron density characterizing the C-C breaking in triplet states, in contrast to the symmetric breaking observed in singlet states. This research complements recent experimental discoveries, enhancing our comprehension of amino acid reactions in the interstellar medium.
RESUMO
A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M-1 cm-1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light-dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.
Assuntos
Bacteriorodopsinas , Bases de Schiff , Bases de Schiff/química , Carotenoides/metabolismo , Retinaldeído/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Concentração de Íons de HidrogênioRESUMO
The operating parameters of photolytic and photocatalytic reaction processes directly affect the efficiency in the degradation of compounds. In particular, pH is a variable that needs to be considered as it exerts great influence on adsorption, absorption, solubility, among others. This study describes the application of the photolytic process, at different pHs, in the degradation of different pharmaceutical compounds. Photolytic reactions were performed with the following contaminants: acetylsalicylic acid (ASA), ibuprofen (IBP) and paracetamol (PAR). In addition, a comparison was performed using the commercial catalyst P25. The results indicated a great influence of the pH in the kinetic constant of the photodegradation and in the UV absorbance of the species. In particular, the degradation of ASA and PAR were favored with the reduction of pH, while the degradation of IBU and SA were favored by increasing. Also, the chromatograms indicated that pH may affect the by-products formed. In comparison, the photocatalysis process in the presence of P25 proved to be much more effective, but it was not possible to achieve complete mineralization of the compounds.
RESUMO
The presence of polycyclic aromatic hydrocarbons (PAHs) on firefighters' personal protective equipment is a concern. One form of preventing from these compounds is to decontaminate proximity firefighting protective clothing (PFPC). Traditional decontamination methods do not promote total removal of pollutants and alter the properties of PFPC. The objective of this work was to evaluate the effectiveness of white light-photolysis (WLP), an advanced oxidation process (AOP), for removing PAHs from PFPC, while maintaining the integrity of the fabric fibers. Experiments were carried out, varying reaction time and concentration of H2O2. With WLP (without H2O2), it was possible to remove more than 73% of the PAHs tested from the outer layer of PFPC in 3 days. The WLP provided the greatest removal of PAHs, compared with the most common mechanical decontamination techniques (laundering and wet-soap brushing). The fibers' integrity after exposure to the white light was evaluated with infrared spectroscopy and scanning electron microscopy/energy dispersive X-ray spectrometry. In addition, a tearing strength test was performed. No remarkable fabric degradation was observed, indicating a possible, routine-compatible, simple, and inexpensive method of decontamination of PFPC, based on photolysis, which is effective in the degradation of PAHs and maintains the integrity of fabric fibers.
Assuntos
Poluentes Ocupacionais do Ar , Bombeiros , Incêndios , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Ocupacionais do Ar/análise , Peróxido de Hidrogênio/análise , Exposição Ocupacional/análise , Fotólise , Hidrocarbonetos Policíclicos Aromáticos/análise , Roupa de ProteçãoRESUMO
This study investigates degradation processes of three antimicrobials in water (norfloxacin, ciprofloxacin, and sulfamethoxazole) by photolysis, focusing on the prediction of toxicity endpoints via in silico quantitative structure-activity relationship (QSAR) of their transformation products (TPs). Photolysis experiments were conducted in distilled water with individual solutions at 10 mg L-1 for each compound. Identification of TPs was performed by means of LC-TOF-MS, employing a method based on retention time, exact mass fragmentation pattern, and peak intensity. Ten main compounds were identified for sulfamethoxazole, fifteen for ciprofloxacin, and fifteen for norfloxacin. Out of 40 identified TPs, 6 have not been reported in the literature. Based on new data found in this work, and TPs already reported in the literature, we have proposed degradation pathways for all three antimicrobials, providing reasoning for the identified TPs. QSAR risk assessment was carried out for 74 structures of possible isomers. QSAR predictions showed that all 19 possible structures of sulfamethoxazole TPs are non-mutagenic, whereas 16 are toxicant, 18 carcinogenic, and 14 non-readily biodegradable. For ciprofloxacin, 28 out of the 30 possible structures for the TPs are mutagenic and non-readily biodegradable, and all structures are toxicant and carcinogenic. All 25 possible norfloxacin TPs were predicted mutagenic, toxicant, carcinogenic, and non-readily biodegradable. Results obtained from in silico QSAR models evince the need of performing risk assessment for TPs as well as for the parent antimicrobial. An expert analysis of QSAR predictions using different models and degradation pathways is imperative, for a large variety of structures was found for the TPs.
Assuntos
Anti-Infecciosos , Poluentes Químicos da Água , Anti-Infecciosos/toxicidade , Ciprofloxacina/toxicidade , Mutagênicos/química , Norfloxacino/toxicidade , Fotólise , Sulfametoxazol , Água , Poluentes Químicos da Água/análiseRESUMO
Polychlorinated biphenyls (PCBs) are a family of highly toxic, resistant, and persistent organic pollutants, among which 2-chlorobiphenyl (PCB-1) is one of the simplest. Most studies on PCBs' photochemistry are limited to their direct photolysis, while the important role of reactive photo-induced species (RPS) (hydroxyl radicals, HOâ; singlet oxygen, 1O2; and triplet excited states of chromophoric dissolved organic matter, 3CDOM*) in removing PCBs in natural waters through indirect photolysis has not yet been evaluated. In this work, the rate constants of the reactions between aqueous PCB-1 and RPS were obtained under simulated solar radiation (450-W Xenon lamp and an AM 1.5 global filter) by competition kinetics, and the effects of the initial pollutant concentration and the physicochemical characteristics of the water were investigated. The direct photolysis quantum yield of PCB-1 in the range 290-800 nm was found as 1.60 × 10-2 mol Einstein-1. The value of kPCB-1,HOâ = (6.80 ± 0.09) × 109 L mol-1 s-1 is in good agreement with the literature. For 1O2, kPCB-1,1O2 = (1.13 ± 0.20) × 106 L mol-1 s-1, while for 3CDOM*, kPCB-1,3CBBP* = (2.44 ± 0.04) × 109 L mol-1 s-1 and kPCB-1,3AQ2S* = (3.36 ± 0.04) × 109 L mol-1 s-1 were obtained using 4-benzoylbenzoic acid (CBBP) and anthraquinone-2-sulfonate (AQ2S) as CDOM proxies, respectively. These results show that the main pathways involved in PCB-1 photodegradation are the reactions with HOâ and 3CDOM* together with direct photolysis. In addition, the photodegradation of PCB-1 in sunlit waters was simulated using the kinetic model APEX (Aqueous Photochemistry of Environmentally Occurring Xenobiotics). According to simulations, a greater influence of the water depth and dissolved organic carbon concentration (DOC) on the persistence of PCB-1 is expected, being only slightly influenced by the concentrations of nitrite, nitrate, and bicarbonate. Finally, based on data reported for Brazilian surface waters, the average half-life (t1/2) of PCB-1 is expected to vary from 2 to 14 days. In particular, the t1/2 in the Paranapanema River is estimated at 7 to 8 days.
Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Compostos de Bifenilo , Cinética , Processos Fotoquímicos , Fotólise , Luz Solar , Água , Poluentes Químicos da Água/análiseRESUMO
The present work reports the effects of meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) aggregation on its excited states absorption spectra, triplet states quenching by molecular oxygen and singlet oxygen production. Experimental techniques such as optical absorption, Z-scan with a white light continuum source and the Laser Flash Photolysis were used to fulfil the study. J-aggregates possess reverse saturable absorption in the 505-660 nm spectral range with a peak centered close to 540 nm. These facts together with their fast relaxation time suggest that they can be employed as material for ultrafast optical limiting and switching. Even though aggregation reduces the porphyrin excited-state lifetimes and quantum yields, it does not reduce the probability of the contact between the quencher and the excited aggregate. Aggregation does not change the contribution of energy transfer mechanisms to triplet state quenching by molecular oxygen. The production of singlet oxygen, the intense absorption in the phototherapeutic window and the high efficiency of conversion of light energy into heat, allow consider J-aggregates as a theranostic agent for photomedicine. It is proposed to use J-aggregates for diagnostics by photoacoustic images and in combination with a near-infrared photodynamic/photothermal dual mode therapy, thus improving synergistically the therapeutic response.
Assuntos
Porfirinas , Oxigênio Singlete , Cinética , OxigênioRESUMO
This study aimed at investigating the photochemical behavior of sulfa drugs containing five and six-membered heterocyclic substituents (sulfamethoxazole (SMX) and sulfadiazine (SDZ), respectively), in an aqueous medium. Despite their importance, studies devoted to the use of photochemical models to predict the environmental phototransformation of pollutants in surface waters, by combining laboratory results and natural aquatic systems parameters, are still scarce in the scientific literature. In this work, the second-order reaction rate constants of SDZ and SMX with hydroxyl radicals (âOH), singlet oxygen (1O2), and triplet excited states of chromophoric dissolved organic matter (3CDOM*) were experimentally determined at pH 7, using the competition kinetics approach. The results show that âOH and 3CDOM* are the key species involved in sulfonamide degradation, with anionic SMX, most prevalent at pH 6-9, being degraded much slower than the anionic form of SDZ. Moreover, SDZ and SMX photodegradation in natural water samples (spring-fed natural pond, public supply reservoir, and sea water) was significantly enhanced relative to depletion in pure water. Finally, from mathematical simulations of the sunlight-driven sulfonamide degradation, half-life times were predicted for these drugs varying from less than 2 to about 90 days, depending on the water depth, concentration of key species (DOC, HCO3-, NO2-, CO32-) in natural aqueous systems, as well as on the particular heterocyclic substituent.
Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Cinética , Processos Fotoquímicos , Fotólise , Água , Poluentes Químicos da Água/análiseRESUMO
Direct photolysis of the emerging contaminant 2-(thiocyanomethylthio) benzothiazole (TMCTB) was performed in aqueous solution at different concentrations with high-pressure mercury lamp (5.0, 8.0, 13.0, 16.0, 20.0, 23.0, 27.0, 35.0, 40.0, 45.0, and 50.0 mg L- 1) and with natural sunlight radiation (6.0, 30.0, and 60.0 mg L- 1). TCMTB underwent rapid degradation by direct photolysis with a high-pressure mercury lamp in aqueous solutions, with 99% removal after 30 min at all concentrations studied. For sunlight photolysis, TCMTB degradation was observed with 96%, 81%, and 64% removal for initial concentrations of 6.0, 30.0, and 60.0 mg L- 1, respectively, after 7 h of exposure to sunlight. The degradation of TCMTB in lab-scale wastewater had kinetic constant and t1/2 in the same order when compared to the photodegradation of TCMTB in aqueous solutions. In addition, the results showed that photolysis with a high-pressure mercury lamp and sunlight were governed by the same kinetic order, however the kinetic parameters showed that degradation with sunlight was 40 times slower than photolysis with the mercury lamp. Twelve transformation products (TP) were identified, and eight of the TP have not been described in the literature. Furthermore, prediction of toxicity with ECOSAR software was carried out for fish, daphnids, and green algae species. It showed that photolytic treatment is efficient for reducing the toxicity of the compound, since the degradation formed compounds with lower toxicity than the primary compound. In conclusion, this study suggests that photolysis is an efficient way to remove the studied contaminant, and it highlights the potential of this technique for the degradation of emerging contaminants in industrial wastewater treatment plants.
Assuntos
Benzotiazóis/metabolismo , Poluentes Químicos da Água/metabolismo , Cinética , Fotólise , Luz Solar , Água , Poluentes Químicos da Água/análiseRESUMO
The multi-copper Laccase enzyme corresponds to one of the most investigated oxidoreductases for potential uses in xenobiotic bioremediation. In this work, we have investigated the photo-degradation process of Laccase from Trametesversicolor induced by UVB light and the influence on its activity over selected substrates. Laccase undergoes photo-degradation when irradiated with UVB light, and the process depends on the presence of oxygen in the medium. With the kinetic data obtained from stationary and time resolved measurements, a photo-degradation mechanism of auto-sensitization was proposed for the enzyme. Laccase generates singlet oxygen, by UVB light absorption, and this reactive oxygen species can trigger the photo-oxidation of susceptible amino acids residues present in the protein structure. The catalytic activity of Laccase was evaluated before and after UVB photolysis over hydroxy-aromatic compounds and substituted phenols which represent potential pollutants. The dye bromothymol blue, the antibiotic rifampicin and the model compound syringaldazine, were selected as substrates. The values of the kinetic parameters determined in our experiments indicate that the photo-oxidative process of Laccase has a very negative impact on its overall catalytic function. Despite this, we have not found evidence of structural damage by SDS-PAGE and circular dichroism experiments, which indicate that the enzyme retained its secondary structure. We believe that, given the importance of Laccase in environmental bioremediation, the information found about the stability of this kind of biomolecule exposed to UV solar irradiation may be relevant in the technological design and/or optimization of decontamination strategies.
Assuntos
Biodegradação Ambiental/efeitos da radiação , Poluentes Ambientais , Lacase/metabolismo , Lacase/efeitos da radiação , Absorção de Radiação , Dicroísmo Circular/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Fluorescência , Oxirredução , FotóliseRESUMO
Endocrine disruptors represent risks to aquatic ecosystem and humans, and are commonly detected in surface water. Photochemical treatments can be used to remove 17ß-estradiol (E2), but few studies have analyzed the kinetics, intermediates, and 17ß-estradiol degradation pathways in natural matrices. In this study, the photochemical behavior of E2 under ultraviolet irradiation (UVC, 254 nm) associated with oxidants (H2O2 or O3) or photocatalyst (TiO2) was investigated to evaluate the degradation potential and the transformation pathway in a natural surface water matrix. Additionally, computational modeling analyses with Ecological Structure Activity Relationships (ECOSAR) software were performed to predict the toxicity from the E2 and its transformation byproducts. E2 degradation kinetics showed adjusted to the pseudo-first-order kinetic model, being kUV/O3 > kUV/TiO2 > kUV/H2O2 > kUV. Eight transformation byproducts were identified by liquid chromatography with time-of-flight mass spectrometry (HPLC/TOF-MS) in natural surface water samples. These byproducts formed as the result of opening the aromatic ring and adding the hydroxyl radical. The E2 degradation pathway was proposed based on the byproducts identified in this study and in previous studies, suggesting the formation of aliphatic and hydroxylated byproducts. E2 treatment presented both very toxic and not harmful byproducts.
Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Ecossistema , Estradiol , Humanos , Cinética , Oxirredução , Estresse Oxidativo , Fotólise , Raios UltravioletaRESUMO
Four different technologies have been compared (photolysis, ZVIâ¯+â¯photolysis, electrolysis and ZVIâ¯+â¯electrolysis) regarding the: (1) degradation of clopyralid, (2) extent of its mineralization, (3) formation of by-products and main reaction pathways. Results show that photolysis is the less efficient treatment and it only attains 5 % removal of the pollutant, much less than ZVI, which reaches 45 % removal and that electrolysis, which attains complete removal and 78 % mineralization within 4â¯h. When ZVI is used as pre-treatment of electrolysis, it was obtained the most efficient technology. The identification of transformation products was carried out for each treatment by LCMS. In total, ten products were identified. Tentative pathways for preferential clopyralid degradation for all processes were proposed. This work draws attention of the synergisms caused by the coupling of techniques involving the treatment of chlorinated compound and sheds light on how the preferential mechanisms of each treatment evaluated occurred.
RESUMO
In this work, nine types of combination advanced oxidation processes/zero-valent iron (AOP-ZVI) were tested, in order to determine if any of these combinations demonstrate good chances as pretreatment for the biological degradation processes of organochlorinated pollutants. To do this, the changes undergone in the respirometric behavior, toxicity and short-term biodegradability were compared. The three AOPs studied were anodic oxidation with mixed metal oxides anodes (AO-MMO), with boron doped diamond anodes (AO-BDD) and photolysis and they were evaluated in three different modes: without any addition of ZVI, with ZVI-dehalogenation as pre-treatment and with ZVI-dehalogenation simultaneous to the AOP treatment. Clopyralid has been used as a model of chlorinated hydrocarbon pollutant. Results show that technologies proposed can successfully treat wastes polluted with clopyralid and the biological characteristics of the waste are significantly modified by dehalogenating the waste with ZVI, either previously to the treatment or simultaneously to the treatment, being the information provided by the three techniques very important in order to evaluate later combinations of the advanced oxidation technologies with biological treatments.
Assuntos
Eletrólise , Boro , Diamante , Eletrodos , Oxirredução , FotóliseRESUMO
In the present study, the decolourization efficiencies of LP-Hg lamp, XeCl and KrCl excilamps at the same power density were compared for the decolourization of dyes in water by UV and UV/H2O2 processes in a batch reactor. Laboratory prototypes of XeCl and KrCl excilamps and a commercial LP-Hg lamp were studied as UV sources. Methylene Blue and Eliamine Blue dyes were used as model pollutants. The effect of the initial concentrations of dye and H2O2 in the TOC removal and kinetic parameters were also studied. The ratio of dye decolourization to the electric power consumption of the KrCl excilamp and LP-Hg lamp for the decolourization of Methylene Blue and Eliamine Blue were evaluated. As a result, the KrCl excilamp showed significantly higher decolourization efficiencies than LP-Hg lamp and XeCl excilamp, but the dye removal rate was significantly slower for Methylene Blue than for Eliamine Blue with this lamp. The KrCl lamp can be an alternative to conventional LP-Hg lamp for the decolourization of dyes by photodegradation, but it depends on the type of dye treated. The addition of H2O2 in a concentration between 0.05 and 0.09%v/v increases significantly the efficiency of the decolourization of Methylene Blue, and further increase does not lead to a higher increase in conversion. The experimental data were fitted to the one phase decay kinetic model with good agreement and the kinetic parameters were reported.
Assuntos
Mercúrio , Poluentes Químicos da Água , Corantes , Peróxido de Hidrogênio , Raios Ultravioleta , ÁguaRESUMO
Effect of ferric ions at concentrations typically found in natural waters (0.05 to 1.06 mg L-1) and low H2O2 concentrations (between 0.5 and 17.9 mg L-1) on simulated sunlight-induced (300 W m-2) photo-Fenton degradation at initial neutral pH (7.0) of amoxicillin and diuron in Milli-Q water was studied using an rotatable central composite experimental design 22 with a central and two axial points. H2O2 concentration was the parameter playing the key role on the degradation of both pollutants. Despite that initial pH was 7.0 in Milli-Q water, this latter decreased rapidly in the first minutes, reaching values of 3.5 and 5.0 for diuron and amoxicillin respectively after 15 min of simulated sunlight irradiation. In contrast, in presence of bicarbonate/carbonate (HCO3-/CO3=), fluoride (F-), and humic acids (HAs) at concentrations found often in surface and well waters with ferric ion and H2O2 concentrations of 0.3 and 9.7 and 15.2 mg L-1 respectively, both pollutants exhibited a strong degradation keeping the circumneutral pH. Amoxicillin and diuron degradation byproducts found by HPLC/MS were compatible with HO⢠and/or CO3-⢠radical attack. Several photo-induced processes such as photo-Fenton (by dissolved ferric-HA complexes), heterogeneous photocatalysis (by colloidal iron), UV-B H2O2 photolysis, irradiated-dissolved organic matter, and their reactions with pollutants would be the main oxidative route responsible of degradations. These findings demonstrated that it could be possible using iron concentrations often found in natural waters to oxidize via photo-Fenton processes among other events, organic pollutants at natural pH conditions.
Assuntos
Amoxicilina/química , Diurona/química , Substâncias Húmicas , Ferro , Poluentes Químicos da Água/química , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Fotólise , Purificação da ÁguaRESUMO
The aim of the present study was to investigate the electrochemical formation of free chlorine species (HOCl/ClO-) and their subsequent use for the degradation of the pesticide atrazine. Initially, the process of electrochemical-free chlorine production was investigated using a bench-scale electrochemical flow-cell. The most significant variables (electrolyte concentration ([NaCl]) and inter-electrode gap) of the process were obtained using a 23 factorial design and the optimum process conditions (1.73â molâ L-1 and 0.56â cm) were determined by a central composite design. Following optimization of free chlorine production, three degradation techniques were investigated, individually and in combination, for atrazine degradation: electrochemical, photochemical and sonochemical. The method using the techniques in combination was denominated sono-photo-assisted electrochemical degradation. Constant current assays were performed and the sono-photo-assisted electrochemical process promoted more efficient removal of atrazine, achieving total organic carbon removal of â¼98% and removal of atrazine to levels below the detection limit (>99%) in under 30â min of treatment. Furthermore, the combination of three techniques displayed lower energy consumption, and phytotoxicity tests (Lactuca sativa) showed that there was no increase in toxicity.
Assuntos
Atrazina , Poluentes Químicos da Água , Purificação da Água , Cloro , Técnicas Eletroquímicas , Oxirredução , Raios UltravioletaRESUMO
The present paper presents the study of (1) the optimization of electrochemical-free chlorine production using an experimental design approach, and (2) the application of the optimum conditions obtained for the application in photo-assisted electrochemical degradation of simulated textile effluent. In the experimental design the influence of inter-electrode gap, pH, NaCl concentration and current was considered. It was observed that the four variables studied are significant for the process, with NaCl concentration and current being the most significant variables for free chlorine production. The maximum free chlorine production was obtained at a current of 2.33â A and NaCl concentrations in 0.96â molâ dm-3. The application of the optimized conditions with simultaneous UV irradiation resulted in up to 83.1% Total Organic Carbon removal and 100% of colour removal over 180â min of electrolysis. The results indicate that a systematic (statistical) approach to the electrochemical treatment of pollutants can save time and reagents.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cloro , Eletrólise , Oxirredução , Projetos de Pesquisa , Indústria TêxtilRESUMO
Advanced oxidation processes (AOPs) have been highly efficient in degrading contaminants of emerging concern (CEC). This study investigated the efficiency of photolysis, peroxidation, photoperoxidation, and ozonation at different pH values to degrade doxycycline (DC) in three aqueous matrices: fountain, tap, and ultrapure water. More than 99.6% of DC degradation resulted from the UV/H2O2 and ozonation processes. Also, to evaluate the toxicity of the original solution and throughout the degradation time, antimicrobial activity tests were conducted using Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, and acute toxicity test using the bioluminescent marine bacterium (Vibrio fischeri). Antimicrobial activity reduced as the drug degradation increased in UV/H2O2 and ozonation processes, wherein the first process only 6 min was required to reduce 100% of both bacteria activity. In ozonation, 27.7 mg L-1 of ozone was responsible for reducing 100% of the antimicrobial activity. When applied the photoperoxidation process, an increase in the toxicity occurred as the high levels of degradation were achieved; it means that toxic intermediates were formed. The ozonated solutions did not present toxicity.