Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28275, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586348

RESUMO

In this study, we address three key challenges in photonic crystals: modeling of isolated flat bands, electric field prediction, and band separation in dispersion relations. Using twisted square Bravais lattices at specific angles, we create Bravais-Moiré photonic crystals exhibiting unique characteristics. These include band pairing and parallelism in certain Brillouin zones, enabling predictable electric field behavior and identification of isolated, flat band pairs within extensive band gaps. We apply advanced Shape theory-based classification methods for precise band separation, offering significant contributions to photonics research and light manipulation applications.

2.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772472

RESUMO

Photonic crystals (PCs) are nanomaterials with photonic properties made up of periodically modulated dielectric materials that reflect light between a wavelength range located in the photonic band gap. Colloidal PCs (C-PC) have been proposed for several applications such as optical platforms for the formation of physical, chemical, and biological sensors based on a chromatic response to an external stimulus. In this work, a robust protocol for the elaboration of photonic crystals based on SiO2 particle (SP) deposition using the vertical lifting method was studied. A wide range of lifting speeds and particle suspension concentrations were investigated by evaluating the C-PC reflectance spectrum. Thinner and higher reflectance peaks were obtained with a decrease in the lifting speed and an increase in the SP concentrations up to certain values. Seven batches of twelve C-PCs employing a SP 3% suspension and a lifting speed of 0.28 µm/s were prepared to test the reproducibility of this method. Every C-PC fabricated in this assay has a wavelength peak in a range of 10 nm and a peak width lower than 90 nm. Inverse-opal polymeric films with a highly porous and interconnected morphology were obtained using the developed C-PC as a template. Overall, these results showed that reproducible colloidal crystals could be elaborated on a large scale with a simple apparatus in a short period, providing a step forward in the scale-up of the fabrication of photonic colloidal crystal and IO structures as those employed for the elaboration of photonic polymeric sensors.

3.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365860

RESUMO

We demonstrate, numerically, a new concept for on-chip magneto-optical (MO) modulation in dense wavelength division multiplexing (DWDM) applications. Our idea uses materials and mechanisms that are compatible with current silicon-on-insulator fabrication and CMOS technologies for monolithic integration. The physics behind our idea stems in the exploitation of the enhanced MO activity of a micro-ring, made of cerium substituted yttrium iron garnet (Ce:YIG) material, to actively manipulate the resonance wavelengths of an adjacent micro-ring resonator (MRR) of silicon (Si). This active manipulation of the latter MO-MRR structure is used to modulate the optical signal traveling through a side-coupled Si bus waveguide. Moreover, by proper tailoring multiple MO-MRRs (side-coupled to the single Si bus waveguide) to match wavelength channels in DWDM across the entire C-band optical communications spectrum, we extend our proposal to massive and dynamic MO modulation in DWDM applications. Significantly, we noticed that the active MO shifting of the resonant wavelength (used for MO modulation here) can be used for improvements in the spectrum utilization efficiency in future elastic optical networks (EONs).

4.
Polymers (Basel) ; 13(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685322

RESUMO

In this work, we present an interferometric polymer-based electro-optical device, integrated with an embedded double-monolayer graphene capacitor for biosensing applications. An external voltage across the capacitor applies an electric field to the graphene layers modifying their surface charge density and the Fermi level position in these layers. This in turn changes the electro-optic properties of the graphene layers making absorption in the waveguide tunable with external voltages. Simultaneously, it is possible to appreciate that this phenomenon contributes to the maximization of the light-graphene interaction by evanescent wave in the sensing area. As a result, it is obtained large phase changes at the output of the interferometer, as a function of small variations in the refractive index in the cladding area, which significantly increasing the sensitivity of the device. The optimum interaction length obtained was 1.24 cm considering a cladding refractive index of 1.33. An absorption change of 129 dB/mm was demonstrated. This result combined with the photonic device based on polymer technology may enable a low-cost solution for biosensing applications in Point of Care (PoC) platform.

5.
J Photochem Photobiol B ; 223: 112283, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34537542

RESUMO

BACKGROUND: In vitro and in vivo testing of new technology was performed to evaluate the antiplasmodial activity of Photonic Multiphase Modulators (PMM) in cultures and in mice previously infected with Plasmodium falciparum and Plasmodium berghei parasites. METHODS: Cultures of P. falciparum infected-erythrocytes were exposed overnight to two generations of different APSE™ and BioPhoton-X™ PMM (C#1, R#1, R#2, D8 and D9). Growth of parasites was determined through flow cytometry or microscopy. Mice of the strain C57BL/6 were infected and treated with water exposed to second-generation APSE™ and BioPhoton-X™ PMM plus one previously untested first-generation PMM (AGN10). Parasitemia and weight loss were monitored throughout the infection until death or point of euthanasia was reached. After death, necropsy was performed on all animals and the number of days each survived was recorded. RESULTS: In vitro and in vivo testing using different APSE™- and BioPhoton-X™-designed PMM revealed an effect of D8 in lowering the growth of the parasite in vitro, while the best effect in mice was observed with D9 PMM, with a reduced weight loss and an increase in survival, although the results in lowering the parasitemia were inconclusive. D9 PMM did not generate ROS in vitro. CONCLUSIONS: APSE™ and BioPhoton-X™ optic circuit technologies can affect the growth of parasites and show protective effects in mice drinking from water treated with their PMM.


Assuntos
Antimaláricos/química , Água/química , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Eritrócitos/parasitologia , Malária/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óptica e Fotônica/métodos , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Nanomaterials (Basel) ; 11(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067597

RESUMO

Porous silicon (PSi) on p++-type (111) silicon substrate has been fabricated by electronically etching method in hydrofluoric acid (HF) media from 5 to 110 mA/cm2 of anodizing current density. The problem of determining the optical properties of (111) PSi is board through implementing a photoacoustic (PA) technique coupled to an electrochemical cell for real-time monitoring of the formation of porous silicon thin films. PA amplitude allows the calculation of the real part of the films refractive index and porosity using the reflectance self-modulation due to the interference effect between the PSi film and the substrate that produces a periodic PA amplitude. The optical properties are studied from specular reflectance measurements fitted through genetic algorithms, transfer matrix method (TMM), and the effective medium theory, where the Maxwell Garnett (MG), Bruggeman (BR), and Looyenga (LLL) models were tested to determine the most suitable for pore geometry and compared with the in situ PA method. It was found that (111) PSi exhibit a branched pore geometry producing optical anisotropy and high scattering films.

7.
Front Bioeng Biotechnol ; 9: 617328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859978

RESUMO

Photonic materials featuring simultaneous iridescence and light emission are an attractive alternative for designing novel optical devices. The luminescence study of a new optical material that integrates light emission and iridescence through liquid crystal self-assembly of cellulose nanocrystal-template silica approach is herein presented. These materials containing Rhodamine 6G were obtained as freestanding composite films with a chiral nematic organization. The scanning electron microscopy confirms that the cellulose nanocrystal film structure comprises multi-domain Bragg reflectors and the optical properties of these films can be tuned through changes in the relative content of silica/cellulose nanocrystals. Moreover, the incorporation of the light-emitting compound allows a complementary control of the optical properties. Overall, such findings demonstrated that the photonic structure plays the role of direction-dependent inner-filter, causing selective suppression of the light emitted with angle-dependent detection.

8.
Materials (Basel) ; 14(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809479

RESUMO

Traditional cancer treatments, such as surgery, radiotherapy, and chemotherapy, are still the most effective clinical practice options. However, these treatments may display moderate to severe side effects caused by their low temporal or spatial resolution. In this sense, photonic nanomedicine therapies have been arising as an alternative to traditional cancer treatments since they display more control of temporal and spatial resolution, thereby yielding fewer side effects. In this work, we reviewed the challenge of current cancer treatments, using the PubMed and Web of Science database, focusing on the advances of three prominent therapies approached by photonic nanomedicine: (i) photothermal therapy; (ii) photodynamic therapy; (iii) photoresponsive drug delivery systems. These photonic nanomedicines act on the cancer cells through different mechanisms, such as hyperthermic effect and delivery of chemotherapeutics and species that cause oxidative stress. Furthermore, we covered the recent advances in materials science applied in photonic nanomedicine, highlighting the main classes of materials used in each therapy, their applications in the context of cancer treatment, as well as their advantages, limitations, and future perspectives. Finally, although some photonic nanomedicines are undergoing clinical trials, their effectiveness in cancer treatment have already been highlighted by pre-clinical studies.

9.
Mikrochim Acta ; 188(3): 70, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547550

RESUMO

A photonic sensor based on inversed opal molecular imprinted polymer (MIP) film to detect the presence of chlorantraniliprole (CHL) residue in tomatoes was developed. Acrylic acid was polymerized in the presence of CHL inside the structure of a colloidal crystal, followed by etching of the colloids and CHL elution. Colloidal crystals and MIP films were characterized by scanning electron microscopy and FT-IR, confirming the inner structure and chemical structure of the material. MIP films supported on polymethylmethacrylate (PMMA) slides were incubated in aqueous solutions of the pesticide and in blended tomato samples. The MIP sensor displayed shifts of the peak wavelength of the reflection spectra in the visible range when incubated in CHL concentrations between 0.5 and 10 µg L-1, while almost no peak displacement was observed for non-imprinted (NIP) films. Whole tomatoes were blended into a liquid and spiked with CHL; the sensor was able to detect CHL residues down to 0.5 µg kg-1, significantly below the tolerance level established by the US Environmental Protection Agency of 1.4 mg kg-1. Stable values were reached after about 30-min incubation in test samples. Control samples (unspiked processed tomatoes) produced peak shifts both in MIP and NIP films; however, this matrix effect did not affect the detection of CHL in the spiked samples. These promising results support the application of photonic MIP sensors as an economical and field-deployable screening tool for the detection of CHL in crops.


Assuntos
Polímeros Molecularmente Impressos/química , Resíduos de Praguicidas/análise , ortoaminobenzoatos/análise , Resinas Acrílicas/química , Limite de Detecção , Solanum lycopersicum/química , Porosidade , Dióxido de Silício/química , Análise Espectral
10.
Beilstein J Nanotechnol ; 12: 139-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564609

RESUMO

The aim of this work is to determine the varying dielectric constant of a biological nanostructured system via electrostatic force microscopy (EFM) and to show how this method is useful to study natural photonic crystals. We mapped the dielectric constant of the cross section of the posterior wing of the damselfly Chalcopteryx rutilans with nanometric resolution. We obtained structural information on its constitutive nanolayers and the absolute values of their dielectric constant. By relating the measured profile of the static dielectric constant to the profile of the refractive index in the visible range, combined with optical reflectance measurements and simulation, we were able to describe the origin of the strongly iridescent wing colors of this Amazonian rainforest damselfly. The method we demonstrate here should be useful for the study of other biological nanostructured systems.

11.
Luminescence ; 36(3): 788-794, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33386703

RESUMO

Diatom frustules have species-specific patterns of pores, striae, pores, and nanopores, periodically arranged on its silica surface, as sets of cavities that modify the vacuum electromagnetic density of states. Therefore, frustules may be considered photonic crystals; the interaction with light-emitting sources inside the pores may potentially result in enhancement or inhibition of their spontaneous radiative emission rate and frequencies. In this work, we studied the photoluminescence of cadmium sulfide nanoparticles (CdS-NP) deposited inside frustule cavities that conveyed evidence of cavity-NP interaction. We synthesized CdS-NP, a semiconductor compound achieving quantum dots small enough to impose confinement effects to the electronic states. CdS-NP and their clusters were physiosorbed onto the surface, striae, and predominantly inside the pores of the cleansed frustules of Amphora sp. A broad peak with a maximum intensity at 437 nm (2.84 eV) was recorded after excitation with a 375 nm light source, showing a large blue shift and signal amplification of the CdS-NP photoluminescence when these were embedded inside the pores of the silica frustule. Using the Brus equation, we estimated a NP size of 4.1 ± 0.2 nm for the CdS-NP snuggly packed inside the smaller pores of the frustule, of 10 ± 0.7 nm in average diameter, The emission Purcell enhancement factor for an emitting atom in a cavity was calculated. The obtained Q factor (c. 5) was smaller than typical Q factors for designed semiconductor cavities of similar dimensions, an expected situation if it is assumed that the pores are open-ended cavities.


Assuntos
Diatomáceas , Nanopartículas , Nanoestruturas , Óptica e Fotônica , Dióxido de Silício
12.
Front Chem ; 8: 551710, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195045

RESUMO

The removal of indoor and outdoor air pollutants is crucial to prevent environmental and health issues. Photocatalytic building materials are an energy-sustainable technology that can completely oxidize pollutants, improving in situ the air quality of contaminated sites. In this work, different photoactive TiO2 catalysts (anatase or modified anatase) and amounts were used to formulate photocatalytic paints in replacement of the normally used TiO2 (rutile) pigment. These paints were tested in two different experimental systems simulating indoor and outdoor environments. In one, indoor illumination conditions were used in the photoreactor for the oxidation of acetaldehyde achieving conversions between 37 and 55%. The other sets of experiments were performed under simulated outdoor radiation for the degradation of nitric oxide, resulting in conversions between 13 and 35%. This wide range of conversions made it difficult to directly compare the paints. Thus, absorption, photonic, and quantum efficiencies were calculated to account for the paints photocatalytic performance. It was found that the formulations containing carbon-doped TiO2 presented the best efficiencies. The paint with the maximum amount of this photocatalyst showed the highest absorption and photonic efficiencies. On the other hand, the paint with the lowest amount of carbon-doped TiO2 presented the highest value of quantum efficiency, thus becoming the optimal formulation in terms of energy use.

13.
Molecules ; 25(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065967

RESUMO

We investigate the plasmonic behavior of a fractal photonic crystal fiber, with Sierpinski-like circular cross-section, and its potential applications for refractive index sensing and multiband polarization filters. Numerical results were obtained using the finite element method through the commercial software COMSOL Multiphysics®. A set of 34 surface plasmon resonances was identified in the wavelength range from λ=630 nm to λ=1700 nm. Subsets of close resonances were noted as a consequence of similar symmetries of the surface plasmon resonance (SPR) modes. Polarization filtering capabilities are numerically shown in the telecommunication windows from the O-band to the L-band. In the case of refractive index sensing, we used the wavelength interrogation method in the wavelength range from λ=670 nm to λ=790 nm, where the system exhibited a sensitivity of S(λ)=1951.43 nm/RIU (refractive index unit). Due to the broadband capabilities of our concept, we expect that it will be useful to develop future ultra-wide band optical communication infrastructures, which are urgent to meet the ever-increasing demand for bandwidth-hungry devices.


Assuntos
Óptica e Fotônica/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Elementos Finitos , Fractais , Refratometria , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/métodos
14.
Sensors (Basel) ; 20(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120866

RESUMO

In this work, we present a multipurpose photonic integrated circuit capable of generating multiheterodyne complex Dual-Combs (DC) THz signals. Our work focuses on translating the functionality of an electro-optic tunable DC system into a photonic chip employing standard building blocks to ensure the scalability and cost efficiency of the integrated device. The architecture we analyze for integration is based on three stages: a seed comb, a mode selection stage and a DC stage. This final DC stage includes a frequency shifter, a key element to improve the final detection of the THz signals and obtain real-time operation. This investigation covers three key aspects: (1) a solution for comb line selection on GHz spaced combs using OIL or OPLL on photonic chips is studied and evaluated, (2) a simple and versatile scheme to produce a frequency shift using the double sideband suppressed carrier modulation technique and an asymmetric Mach Zehnder Interferometer to filter one of the sidebands is proposed, and (3) a multipurpose architecture that can offer a versatile effective device, moving from application-specific PICs to general-purpose PICs. Using the building blocks (BBs) available from an InP-based foundry, we obtained simulations that offer a high-quality Dual-Comb frequency shifted signal with a side mode suppression ratio around 21 dB, and 41 dB after photodetection with an intermediate frequency of 1 MHz. We tested our system to generate a Dual-Comb with 10 kHz of frequency spacing and an OOK modulation with 5 Gbps which can be down-converted to the THz range by a square law detector. It is also important to note that the presented architecture is multipurpose and can also be applied to THz communications. This design is a step to enable a commercial THz photonic chip for multiple applications such as THz spectroscopy, THz multispectral imaging and THz telecommunications and offers the possibility of being fabricated in a multi-project wafer.

15.
Materials (Basel) ; 13(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213922

RESUMO

A homogenization theory that can go beyond the regime of long wavelengths is proposed, namely, a theory that is still valid for vectors of waves near the edge of the first zone of Brillouin. In this paper, we consider that the displacement vector and the magnetic induction fields have averages in the volume of the cell associated with the values of the electric and magnetic fields in the edges of the cell, so they satisfy Maxwell's equations. Applying Fourier formalism, explicit expressions were obtained for the case of a photonic crystal with arbitrary periodicity. In the case of one-dimensional (1D) photonic crystals, the expressions for the tensor of the effective bianisotropic response (effective permittivity, permeability and crossed magneto-electric tensors) are remarkably simplified. Specifically, the effective permittivity and permeability tensors are calculated for the case of 1D photonic crystals with isotropic and anisotropic magnetic inclusions. Through a numerical calculation, the dependence of these effective tensors upon the filling fraction of the magnetic inclusion is shown and analyzed. Our results show good correspondence with the approach solution of Rytov's effective medium. The derived formulas can be very useful for the design of anisotropic systems with specific optical properties that exhibit metamaterial behavior.

16.
Materials (Basel) ; 13(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168936

RESUMO

The local modification of the composition of glasses by high repetition femtosecond laser irradiation is an attractive method for producing photonic devices. Recently, the successful production of waveguides with a refractive index contrast (Δn) above 10-2 by fs-laser writing has been demonstrated in phosphate glasses containing La2O3 and K2O modifiers. This large index contrast has been related to a local enrichment in lanthanum in the light guiding region accompanied by a depletion in potassium. In this work, we have studied the influence of the initial glass composition on the performance of waveguides that are produced by fs-laser induced element redistribution (FLIER) in phosphate-based samples with different La and K concentrations. We have analyzed the contribution to the electronic polarizability of the different glass constituents based on refractive index measurements of the untreated samples, and used it to estimate the expected index contrast caused by the experimentally measured local compositional changes in laser written guiding structures. These estimated values have been compared to experimental ones that are derived from near field images of the guided modes with an excellent agreement. Therefore, we have developed a method to estimate before-hand the expected index contrast in fs-laser written waveguides via FLIER for a given glass composition. The obtained results stress the importance of considering the contribution to the polarizability of all the moving species when computing the expected refractive index changes that are caused by FLIER processes.

17.
Nanomaterials (Basel) ; 10(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012926

RESUMO

Porous Si-SiO2 UV microcavities are used to modulate a broad responsivity photodetector (GVGR-T10GD) with a detection range from 300 to 510 nm. The UV microcavity filters modified the responsivity at short wavelengths, while in the visible range the filters only attenuated the responsivity. All microcavities had a localized mode close to 360 nm in the UV-A range, and this meant that porous Si-SiO2 filters cut off the photodetection range of the photodetector from 300 to 350 nm, where microcavities showed low transmission. In the short-wavelength range, the photons were absorbed and did not contribute to the photocurrent. Therefore, the density of recombination centers was very high, and the photodetector sensitivity with a filter was lower than the photodetector without a filter. The maximum transmission measured at the localized mode (between 356 and 364 nm) was dominant in the UV-A range and enabled the flow of high energy photons. Moreover, the filters favored light transmission with a wavelength from 390 nm to 510 nm, where photons contributed to the photocurrent. Our filters made the photodetector more selective inside the specific UV range of wavelengths. This was a novel result to the best of our knowledge.

18.
Environ Sci Pollut Res Int ; 26(13): 12720-12730, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30877547

RESUMO

A regional raw clay was used as the starting material to prepare iron-pillared clays with different iron contents. The catalytic activity of these materials was tested in the heterogeneous photo-Fenton process, applied to the degradation of 2-chlorophenol chosen as the model pollutant. Different catalyst loads between 0.2 and 1.0 g L-1 and pH values between 3.0 and 7.0 were studied. The local volumetric rate of photon absorption (LVRPA) in the reactor was evaluated solving the radiative transfer equation applying the discrete ordinate method and using the optical properties of the catalyst suspensions. The photonic and quantum efficiencies of the 2-chlorophenol degradation depend on both the catalyst load and the iron content of the catalyst. The higher values for these parameters, 0.080 mol Einstein-1 and 0.152 mol Einstein-1, respectively, were obtained with 1.0 g L-1 of the catalyst with the higher iron content (17.6%). For the mineralization process, photonic and quantum efficiencies depend mainly on the catalyst load. Therefore, it was possible to employ a natural and cheap resource from the region to obtain pillared clay-based catalysts to degrade organic pollutants in water.


Assuntos
Argila/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Clorofenóis/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Fótons , Purificação da Água/instrumentação
19.
Sensors (Basel) ; 18(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545035

RESUMO

A realistic implementation of an all-fiber CO2 sensor, using 74 cm of hollow core photonic crystal fiber (HC-PCF) as the cavity for light/gas interaction, has been implemented. It is based on CO2 absorbance in the 2 µm region. The working range is from 2% to 100% CO2 concentration at 1 atm total pressure and the response time obtained was 10 min. Depending on the concentration level, the sensor operates at one of three different wavelengths (2003.5 nm, 1997.0 nm and 1954.5 nm) to maintain a high sensitivity across all the working range.

20.
Sensors (Basel) ; 18(6)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867016

RESUMO

In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA