Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
J Plant Physiol ; 303: 154355, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39357114

RESUMO

In serpentine soils, the low level of calcium relative to magnesium (Ca:Mg) is detrimental to the growth of most plant species. Ecotypic variation in Erythranthe guttata allows for some populations to maintain high photosynthetic rates and biomass despite low Ca:Mg. In this study, the mechanism of tolerance was investigated by treating hydroponically grown plants with either high (1.0) or low (0.02) Ca:Mg growth solutions and assaying excised leaf discs for rates of photosynthesis and disc expansion, and for starch, Ca2+ and Mg2+ ion concentrations. Low Ca:Mg in the assay solutions reduced both photosynthesis and leaf disc expansion after one week of treatment. However, serpentine tissues show stable photosynthetic rates after one week and a recovery in leaf tissue expansion after two weeks exposure to low Ca:Mg conditions. Values for non-serpentine tissues continued to decline. Increased growth of low Ca:Mg treated discs supplied with exogenous sucrose suggests that growth in serpentine-exposed tissues is limited by availability of carbon products from photosynthesis. Serpentine leaves had higher vacuole Mg concentrations than non-serpentine leaves after three weeks of treatment with low Ca:Mg. The combination of elevated starch concentrations, reduced growth and lower vacuolar Mg concentrations in leaves of non-serpentine plants grown in low Ca:Mg indicate an inefficient use of carbon resources and starch degradation as an observed response to Mg toxicity. Together, these results suggest that serpentine E. guttata exhibits an inducible tolerance to low Ca:Mg through gradual compartmentalization of magnesium to maintain the production and metabolism of photosynthates necessary for growth.

2.
Planta ; 260(4): 90, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256219

RESUMO

MAIN CONCLUSION: The high intrinsic water-use efficiency of Erianthus may be due to the low abaxial stomatal density and the accumulation of leaf metabolites such as betaine and gamma-aminobutyric acid. Sugarcane is an important crop that is widely cultivated in tropical and subtropical regions of the world. Because drought is among the main impediments limiting sugarcane production in these regions, breeding of drought-tolerant sugarcane varieties is important for sustainable production. Erianthus arundinaceus, a species closely related to sugarcane, exhibits high intrinsic water-use efficiency (iWUE), the underlying mechanisms for which remain unknown. To improve the genetic base for conferring drought tolerance in sugarcane, in the present study, we performed a comprehensive comparative analysis of leaf gas exchange and metabolites in different organs of sugarcane and Erianthus under wet and dry soil-moisture conditions. Erianthus exhibited lower stomatal conductance under both conditions, which resulted in a higher iWUE than in sugarcane. Organ-specific metabolites showed gradations between continuous parts and organs, suggesting linkages between them. Cluster analysis of organ-specific metabolites revealed the effects of the species and treatments in the leaves. Principal component analysis of leaf metabolites confirmed a rough ordering of the factors affecting their accumulations. Compared to sugarcane leaf, Erianthus leaf accumulated more raffinose, betaine, glutamine, gamma-aminobutyric acid, and S-adenosylmethionine, which function as osmolytes and stress-response compounds, under both the conditions. Our extensive analyses reveal that the high iWUE of Erianthus may be due to the specific accumulation of such metabolites in the leaves, in addition to the low stomatal density on the abaxial side of leaves. The identification of drought-tolerance traits of Erianthus will benefit the generation of sugarcane varieties capable of withstanding drought stress.


Assuntos
Secas , Folhas de Planta , Saccharum , Saccharum/genética , Saccharum/fisiologia , Saccharum/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Água/metabolismo , Água/fisiologia , Transpiração Vegetal/fisiologia
3.
Front Plant Sci ; 15: 1397948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148618

RESUMO

To investigate the dynamics of stomata, transpiration, and photosynthesis under varying light intensities and CO2 conditions during leaf development, the light response and CO2 response of stomatal conductance (g sw), transpiration rate (T r), and net photosynthetic rate (P n) were observed for rice leaves at different days after leaf emergence (DAE). The results showed that (1) as photosynthetically active radiation (PAR) increased, leaf g sw, T r, and P n initially increased rapidly and linearly, followed by a more gradual rise to maximum values, and then either stabilized or showed a declining trend. The maximum g sw, T r, and P n were smaller and occurred earlier for old leaves than for young leaves. The g sw, T r, and P n all exhibited a linear decreasing trend with increasing DAE, and the rate of decrease slowed down with the reduction in PAR; (2) as the CO2 concentration (C a) increased, g sw and T r decreased gradually to a stable minimum value, while P n increased linearly and slowly up to the maximum and then kept stable or decreased. The g sw, T r, and P n values initially kept high and then decreased with the increase of DAE. These results contribute to understanding the dynamics in g sw, T r, and P n during rice leaf growth and their response to varied light and CO2 concentration conditions and provide mechanistic support to estimate dynamic evapotranspiration and net ecosystem productivity at field-scale and a larger scale in paddy field ecosystems through the upscaling of leaf-level stomatal conductance, transpiration, and photosynthesis.

4.
Tree Physiol ; 44(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39151030

RESUMO

Increases in temperatures and atmospheric CO2 concentration influence the growth performance of trees worldwide. The direction and intensity of tree growth and physiological responses to changing climate do, however, vary according to environmental conditions. Here we present complex, long-term, tree-physiological responses to unprecedented temperature increase in East Asia. For this purpose, we studied radial growth and isotopic (δ13C and δ18O) variations using tree-ring data for the past 100 yr of dominant Quercus mongolica trees from the cool-temperate forests from Hallasan, South Korea. Overall, we found that tree stem basal area increment, intercellular CO2 concentration and intrinsic water-use efficiency significantly increased over the last century. We observed, however, short-term variability in the trends of these variables among four periods identified by change point analysis. In comparison, δ18O did not show significant changes over time, suggesting no major hydrological changes in this precipitation-rich area. The strength and direction of growth-climate relationships also varied during the past 100 yr. Basal area increment (BAI) did not show significant relationships with the climate over the 1924-1949 and 1975-1999 periods. However, over 1950-1974, BAI was negatively affected by both temperature and precipitation, while after 2000, a temperature stimulus was observed. Finally, over the past two decades, the increase in Q. mongolica tree growth accelerated and was associated with high spring-summer temperatures and atmospheric CO2 concentrations and decreasing intrinsic water-use efficiency, δ18O and vapour pressure deficit, suggesting that the photosynthetic rate continued increasing under no water limitations. Our results indicate that the performance of dominant trees of one of the most widely distributed species in East Asia has benefited from recent global changes, mainly over the past two decades. Such findings are essential for projections of forest dynamics and carbon sequestration under climate change.


Assuntos
Dióxido de Carbono , Mudança Climática , Quercus , Árvores , Água , Dióxido de Carbono/metabolismo , República da Coreia , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Quercus/metabolismo , Água/metabolismo , Isótopos de Oxigênio/análise , Isótopos de Carbono/análise , Temperatura
5.
Plants (Basel) ; 13(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39065430

RESUMO

Drip fertigation (DF) is a widely used technology to increase grain yield with water and fertilizer conservation. However, the mechanism of high grain yield (GY) under DF is still unclear. Here, a four-year field experiment assessed the impacts of four treatments (i.e., conventional irrigation and nitrogen application, CK; drip irrigation with conventional nitrogen fertilization, DI; split-nitrogen fertigation with conventional irrigation, SF; and drip fertigation, DF) on maize phenology, leaf photosynthetic rates, grain filling processes, plant biomass, and GY. The results showed that DF significantly increased maize GY by affecting phenology, grain filling traits, aboveground biomass (BIO) accumulation, and translocation. Specifically, DF significantly increased leaf chlorophyll content, which enhanced leaf photosynthetic rates, and together with an increase of leaf area index, promoted BIO accumulation. As a result, the BIO at the silking stage of DF increased by 29.5%, transported biomass increased by 109.2% (1.2 t ha-1), and the accumulation of BIO after silking increased by 23.1% (1.7 t ha-1) compared with CK. Meanwhile, DF prolonged grain filling days, significantly increased the grain weight of 100 kernels, and promoted GY increase. Compared with CK, the four-year averaged GY and BIO increased by 34.3% and 26.8% under DF; a 29.7%, 46.1%, and 24.2% GY increase and a 30.7%, 39.5%, and 29.9% BIO increase were contributed by irrigation, nitrogen, and coupling effects of irrigation and nitrogen, respectively. These results reveal the high yield mechanism of drip-fertigated maize, and are of important significance for promoting the application of drip fertigation.

6.
Plant Environ Interact ; 5(4): e70000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39045287

RESUMO

Hemiparasitic Cassytha filiformis commonly infects native host (Dillenia suffruticosa and Melastoma malabathricum) and introduced host (Acacia auriculiformis and Acacia mangium) species in threatened heath forests in Brunei. This study aims to investigate the impact of parasitism on the ecophysiology of these host species. This study addresses the research gap in understanding the ecophysiology of C. filiformis-host associations, particularly when native and introduced hosts were infected. We generated CO2 and light response curves to examine the effects of increasing CO2 and light levels of infected and uninfected hosts and examined gaseous exchange, mineral nutrients, and secondary bioactive compounds of host-parasite associations. Infected hosts were negatively impacted by C. filiformis as exhibited in the CO2 and light response curves, with C. filiformis-native host association performing better than introduced species. There were no significant differences in photosynthetic parameters between infected and uninfected hosts, except in D. suffruticosa. Certain nutrient contents showed significant differences, but total N, Ca, and K in uninfected hosts were similar to infected hosts. Total phenols and tannins were significantly higher in introduced hosts than native hosts. Our findings asserted that this hemiparasitic vine relies on both its photosynthetic efficiency and nutrient acquisition from its hosts. The parasitism did not significantly hinder the ecophysiological performance of infected hosts, suggesting a plausible co-existence between the hosts and C. filiformis. This study provides essential ecophysiological information for future research on how C. filiformis can establish itself without negatively impacting the co-habitating native hosts.

7.
Plants (Basel) ; 13(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891244

RESUMO

Rare earth elements (REEs) have been intentionally used in Chinese agriculture since the 1980s to improve crop yields. Around the world, REEs are also involuntarily applied to soils through phosphate fertilizers. These elements are known to alleviate damage in plants under abiotic stresses, yet there is no information on how these elements act in the physiology of plants. The REE mode of action falls within the scope of the hormesis effect, with low-dose stimulation and high-dose adverse reactions. This study aimed to verify how REEs affect rice plants' physiology to test the threshold dose at which REEs could act as biostimulants in these plants. In experiment 1, 0.411 kg ha-1 (foliar application) of a mixture of REE (containing 41.38% Ce, 23.95% La, 13.58% Pr, and 4.32% Nd) was applied, as well as two products containing 41.38% Ce and 23.95% La separately. The characteristics of chlorophyll a fluorescence, gas exchanges, SPAD index, and biomass (pot conditions) were evaluated. For experiment 2, increasing rates of the REE mix (0, 0.1, 0.225, 0.5, and 1 kg ha-1) (field conditions) were used to study their effect on rice grain yield and nutrient concentration of rice leaves. Adding REEs to plants increased biomass production (23% with Ce, 31% with La, and 63% with REE Mix application) due to improved photosynthetic rate (8% with Ce, 15% with La, and 27% with REE mix), favored by the higher electronic flow (photosynthetic electron transport chain) (increase of 17%) and by the higher Fv/Fm (increase of 14%) and quantum yield of photosystem II (increase of 20% with Ce and La, and 29% with REE Mix), as well as by increased stomatal conductance (increase of 36%) and SPAD index (increase of 10% with Ce, 12% with La, and 15% with REE mix). Moreover, adding REEs potentiated the photosynthetic process by increasing rice leaves' N, Mg, K, and Mn concentrations (24-46%). The dose for the higher rice grain yield (an increase of 113%) was estimated for the REE mix at 0.72 kg ha-1.

8.
Sci Rep ; 14(1): 12988, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844823

RESUMO

Salinity stress significantly hinders plant growth by disrupting osmotic balance and inhibiting nutrient uptake, leading to reduced biomass and stunted development. Using saponin (SAP) and boron (B) can effectively overcome this issue. Boron decreases salinity stress by stabilizing cell walls and membranes, regulating ion balance, activating antioxidant enzymes, and enhancing water uptake. SAP are bioactive compounds that have the potential to alleviate salinity stress by improving nutrient uptake, modulating plant hormone levels, promoting root growth, and stimulating antioxidant activity. That's why the current study was planned to use a combination of SAP and boron as amendments to mitigate salinity stress in sweet potatoes. Four levels of SAP (0%, 0.1%, 0.15%, and 0.20%) and B (control, 5, 10, and 20 mg/L B) were applied in 4 replications following a completely randomized design. Results illustrated that 0.15% SAP with 20 mg/L B caused significant enhancement in sweet potato vine length (13.12%), vine weight (12.86%), root weight (8.31%), over control under salinity stress. A significant improvement in sweet potato chlorophyll a (9.84%), chlorophyll b (20.20%), total chlorophyll (13.94%), photosynthetic rate (17.69%), transpiration rate (16.03%), and stomatal conductance (17.59%) contrast to control under salinity stress prove the effectiveness of 0.15% SAP + 20 mg/L B treatment. In conclusion, 0.15% SAP + 20 mg/L B is recommended to mitigate salinity stress in sweet potatoes.


Assuntos
Boro , Ipomoea batatas , Estresse Salino , Saponinas , Ipomoea batatas/crescimento & desenvolvimento , Boro/farmacologia , Saponinas/farmacologia , Estresse Salino/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Clorofila/metabolismo , Sinergismo Farmacológico , Salinidade
9.
Plants (Basel) ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931132

RESUMO

When calculating the CWSI, previous researchers usually used canopy temperature and atmospheric temperature at the same time. However, it takes some time for the canopy temperature (Tc) to respond to atmospheric temperature (Ta), suggesting the time-lag effects between Ta and Tc. In order to investigate time-lag effects between Ta and Tc on the accuracy of the CWSI inversion of photosynthetic parameters in winter wheat, we conducted an experiment. In this study, four moisture treatments were set up: T1 (95% of field water holding capacity), T2 (80% of field water holding capacity), T3 (65% of field water holding capacity), and T4 (50% of field water holding capacity). We quantified the time-lag parameter in winter wheat using time-lag peak-seeking, time-lag cross-correlation, time-lag mutual information, and gray time-lag correlation analysis. Based on the time-lag parameter, we modified the CWSI theoretical and empirical models and assessed the impact of time-lag effects on the accuracy of the CWSI inversion of photosynthesis parameters. Finally, we applied several machine learning algorithms to predict the daily variation in the CWSI after time-lag correction. The results show that: (1) The time-lag parameter calculated using time-lag peak-seeking, time-lag cross-correlation, time-lag mutual information, and gray time-lag correlation analysis are 44-70, 32-44, 42-58, and 76-97 min, respectively. (2) The CWSI empirical model corrected by the time-lag mutual information method has the highest correlation with photosynthetic parameters. (3) GA-SVM has the highest prediction accuracy for the CWSI empirical model corrected by the time-lag mutual information method. Considering time lag effects between Ta and Tc effectively enhanced the correlation between CWSI and photosynthetic parameters, which can provide theoretical support for thermal infrared remote sensing to diagnose crop water stress conditions.

10.
Plants (Basel) ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38794400

RESUMO

Southwestern China is receiving excessive chemical fertilizers to meet the challenges of continuous cropping. These practices are deteriorating the soil environment and affecting tobacco (Nicotiana tabacum L.) yield and quality adversely. A novel microbially enriched biochar-based fertilizer was synthesized using effective microorganisms, tobacco stalk biochar and basal fertilizer. A field-scale study was conducted to evaluate the yield response of tobacco grown on degraded soil amended with our novel biochar-based microbial fertilizer (BF). Four treatments of BF (0%, 1.5%, 2.5% and 5%) were applied in the contaminated field to grow tobacco. The application of BF1.5, BF2.5 and BF5.0 increased the available water contents by 9.47%, 1.18% and 2.19% compared to that with BF0 respectively. Maximum growth of tobacco in terms of plant height and leaf area was recorded for BF1.5 compared to BF0. BF1.5, BF2.5 and BF5.0 increased SPAD by 13.18-40.53%, net photosynthetic rate by 5.44-60.42%, stomatal conductance by 8.33-44.44%, instantaneous water use efficiency by 55.41-93.24% and intrinsic water use efficiency by 0.09-24.11%, while they decreased the intercellular CO2 concentration and transpiration rate by 3.85-6.84% and 0.29-47.18% relative to BF0, respectively (p < 0.05). The maximum increase in tobacco yield was recorded with BF1.5 (23.81%) compared to that with BF0. The present study concludes that the application of BF1.5 improves and restores the degraded soil by improving the hydraulic conductivity and by increasing the tobacco yield.

12.
BMC Plant Biol ; 24(1): 427, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769501

RESUMO

BACKGROUND: Our meta-analysis examines the effects of melatonin on wheat under varying abiotic stress conditions, focusing on photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. We initially collected 177 publications addressing the impact of melatonin on wheat. After meticulous screening, 31 published studies were selected, encompassing 170 observations on photosynthetic parameters, 73 on chlorophyll fluorescence, 65 on leaf water status, 240 on photosynthetic pigments. RESULTS: The analysis revealed significant heterogeneity across studies (I² > 99.90%) for the aforementioned parameters and evidence of publication bias, emphasizing the complex interaction between melatonin application and plant physiological responses. Melatonin enhanced the overall response ratio (lnRR) for photosynthetic rates, stomatal conductance, transpiration rates, and fluorescence yields by 20.49, 22.39, 30.96, and 1.09%, respectively, compared to the control (no melatonin). The most notable effects were under controlled environmental conditions. Moreover, melatonin significantly improved leaf water content and reduced water potential, particularly under hydroponic conditions and varied abiotic stresses, highlighting its role in mitigating water stress. The analysis also revealed increases in chlorophyll pigments with soil drenching and foliar spray, and these were considered the effective application methods. Furthermore, melatonin influenced chlorophyll SPAD and intercellular CO2 concentrations, suggesting its capacity to optimize photosynthetic efficiency. CONCLUSIONS: This synthesis of meta-analysis confirms that melatonin significantly enhances wheat's resilience to abiotic stress by improving photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. Despite observed heterogeneity and publication bias, the consistent beneficial effects of melatonin, particularly under controlled conditions with specific application methods e.g. soil drenching and foliar spray, demonstrate its utility as a plant growth regulator for stress management. These findings encourage focused research and application strategies to maximize the benefits of melatonin in wheat farming, and thus contributing to sustainable agricultural practices.


Assuntos
Melatonina , Fotossíntese , Estresse Fisiológico , Triticum , Melatonina/farmacologia , Triticum/fisiologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia
13.
Plant Physiol Biochem ; 212: 108733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761547

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] yield is limited by the coincidence of drought during its sensitive stages. The use of cerium oxide nanoparticles in agriculture is minimal despite its antioxidant properties. We hypothesize that drought-induced decreases in photosynthetic rate in sorghum may be associated with decreased tissue water content and organelle membrane damage. We aimed to quantify the impact of foliar application of nanoceria on transpiration rate, accumulation of compatible solutes, photosynthetic rate and reproductive success under drought stress in sorghum. In order to ascertain the mechanism by which nanoceria mitigate drought-induced inhibition of photosynthesis and reproductive success, experiments were undertaken in a factorial completely randomized design or split-plot design. Foliar spray of nanoceria under progressive soil drying conserved soil moisture by restricting the transpiration rate than water spray, indicating that nanoceria exerted strong stomatal control. Under drought stress at the seed development stage, foliar application of nanoceria at 25 mg L-1 significantly improved the photosynthetic rate (19%) compared to control by maintaining a higher tissue water content (18%) achieved by accumulating compatible solutes. The nanoceria-sprayed plants exhibited intact chloroplast and thylakoid membranes because of increased heme enzymes [catalase (53%) and peroxidase (45%)] activity, which helped in the reduction of hydrogen peroxide content (74%). Under drought, compared to water spray, nanoceria improved the seed-set percentage (24%) and individual seed mass (27%), eventually causing a higher seed yield. Thus, foliar application of nanoceria at 25 mg L-1 under drought can increase grain yield through increased photosynthesis and reproductive traits.


Assuntos
Cério , Secas , Nanopartículas , Fotossíntese , Estômatos de Plantas , Sorghum , Sorghum/metabolismo , Sorghum/efeitos dos fármacos , Sorghum/fisiologia , Cério/farmacologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Fotossíntese/efeitos dos fármacos , Resistência à Seca
14.
Plant Cell Environ ; 47(8): 3147-3165, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693776

RESUMO

Partial root-zone drying irrigation (PRD) can improve water-use efficiency (WUE) without reductions in photosynthesis; however, the mechanism by which this is attained is unclear. To amend that, PRD conditions were simulated by polyethylene glycol 6000 in a root-splitting system and the effects of PRD on cotton growth were studied. Results showed that PRD decreased stomatal conductance (gs) but increased mesophyll conductance (gm). Due to the contrasting effects on gs and gm, net photosynthetic rate (AN) remained unaffected, while the enhanced gm/gs ratio facilitated a larger intrinsic WUE. Further analyses indicated that PRD-induced reduction of gs was related to decreased stomatal size and stomatal pore area in adaxial and abaxial surface which was ascribed to lower pore length and width. PRD-induced variation of gm was ascribed to the reduced liquid-phase resistance, due to increases in chloroplast area facing to intercellular airspaces and the ratio of chloroplast surface area to total mesophyll cell area exposed to intercellular airspaces, as well as to decreases in the distance between cell wall and chloroplast, and between adjacent chloroplasts. The above results demonstrate that PRD, through alterations to stomatal and mesophyll structures, decoupled gs and gm responses, which ultimately increased intrinsic WUE and maintained AN.


Assuntos
Irrigação Agrícola , Gossypium , Células do Mesofilo , Fotossíntese , Folhas de Planta , Raízes de Plantas , Estômatos de Plantas , Água , Gossypium/fisiologia , Gossypium/metabolismo , Estômatos de Plantas/fisiologia , Células do Mesofilo/metabolismo , Células do Mesofilo/fisiologia , Água/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Transpiração Vegetal/fisiologia , Cloroplastos/metabolismo , Dessecação
15.
Methods Mol Biol ; 2790: 121-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649569

RESUMO

The Clark-type electrode can be used to assess the rates of photosynthesis by detecting changes in O2 concentration in a culture. This chapter describes a method for a liquid phase measurement of light and dissolved inorganic carbon-dependent photosynthesis using the model green alga Chlamydomonas reinhardtii. The technique can be used to evaluate the presence or efficiency of carbon-concentrating mechanisms.


Assuntos
Chlamydomonas reinhardtii , Eletrodos , Oxigênio , Fotossíntese , Chlamydomonas reinhardtii/metabolismo , Oxigênio/metabolismo , Carbono/metabolismo , Carbono/química , Luz
16.
Oecologia ; 205(1): 69-80, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683388

RESUMO

Hard limestone substrates, which are extensively distributed, are believed to exacerbate drought and increase the difficulty of restoration in vulnerable karst regions. Fissures in such substrates may alleviate the negative effect of drought on plants, but the underlying mechanisms remain poorly understood. In a two-way factorial block design, the growth and photosynthesis of 2-year-old Phoebe zhennan seedlings were investigated in two water availabilities (high versus low) and three stimulated fissure habitat groups (soil, soil-filled fissure and non-soil-filled fissure). Moreover, the fissure treatments included both small and big fissures. Compared to the soil group, the non-soil-filled fissure group had decreased the total biomass, root biomass, total root length, and the root length of fine roots in the soil layer at both water availabilities, but increased net photosynthetic rate (Pn) and retained stable water use efficiency (WUE) at low water availability. However, there were no significant differences between the soil-filled fissure group and soil group in the biomass accumulation and allocation as well as Pn. Nevertheless, the SF group decreased the root distribution in total and in the soil layer, and also increased WUE at low water availability. Across all treatments, fissure size had no effect on plant growth or photosynthesis. Karst fissures filled with soil can alleviate drought impacts on plant root growth, which involves adjusting root distribution strategies and increasing water use efficiency. These results suggest that rock fissures can be involved in long-term plant responses to drought stress and vegetation restoration in rocky mountain environments under global climate change.


Assuntos
Secas , Fotossíntese , Solo , Biomassa , Água , Raízes de Plantas/crescimento & desenvolvimento , Ecossistema
17.
Heliyon ; 10(7): e28766, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576555

RESUMO

For thousands of years, plants have been utilized for medicinal purposes. For its naturally existing antibacterial properties, Nigella sativa is one of the most researched herbs. A study was conducted during rabi 2020-21 at The University of Haripur in order to evaluate the potential of ascorbic acid as plant growth enhancer. Two concentrations of ascorbic acid i-e 350 µm and 400 µm were sprayed along with control and water only spray on Nigella sativa crop. The study was arranged in RCBD two factor factorial arrangement. Factor A: ascorbic acid concentrations along with control and water spray, factor B: Growth stages (Stage1 = 40 days after sowing, Stage 2 = 80 DAS, Stage 3 = 120 DAS, Stage 4 = 40 + 80 DAS, Stage 5 = 40 + 120 DAS, Stage 6 = 80 + 120 DAS, Stage 7 = 40 + 80 + 120 DAS). Crop was sown in first week of November. Results reviled that chlorophyll b content, fixed oil content, 1000 seed weight, grain yield, Photosynthetic rate (µ mole m-2s-1), Transpiration rate (mmole m-2s-1), photosynthetic water use efficiency, Internal CO2 concentration (Ci) of leaf tissue and Stomatal conductance (mmole m-2s-1) were significantly affected by ascorbic acid concentrations and stage of application. Crop growth rate increased by 19.88% and 17.29%, chlorophyll b by 12.3% and 11.2%, fixed oil by 11.7% and 9%, grain yield by 10.29% and 9.8%, harvest index by 4% and 5.7% photosynthetic rate by 33%, 20% and stomatal conductance by 24.24% and 24.25 with application of ascorbic acid @ 350 µm, over control and water spray respectively. On the basis of these results it is concluded that application of ascorbic acid at the rate of 350 µm, followed by ascorbic acid at the rate of 400 µm significantly improves black cumin (Nigella sativa) yield and production. Hence it is recommended to apply ascorbic acid at the rate of 350 µm at 40 + 80+120 days after sowing of Nigella sativa crop for obtaining maximum results.

18.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611517

RESUMO

Mixed cultivation with legumes may alleviate the nitrogen (N) limitation of monoculture Eucalyptus. However, how leaf functional traits respond to N in mixed cultivation with legumes and how they affect tree growth are unclear. Thus, this study investigated the response of leaf functional traits of Eucalyptus urophylla × Eucalyptus grandis (E. urophylla × E. grandis) and Dalbergia odorifera (D. odorifera) to mixed culture and N application, as well as the regulatory pathways of key traits on seedling growth. In this study, a pot-controlled experiment was set up, and seedling growth indicators, leaf physiology, morphological parameters, and N content were collected and analyzed after 180 days of N application treatment. The results indicated that mixed culture improved the N absorption and photosynthetic rate of E. urophylla × E. grandis, further promoting seedling growth but inhibiting the photosynthetic process of D. odorifera, reducing its growth and biomass. Redundancy analysis and path analysis revealed that leaf nitrogen content, pigment content, and photosynthesis-related physiological indicators were the traits most directly related to seedling growth and biomass accumulation, with the net photosynthetic rate explaining 50.9% and 55.8% of the variation in growth indicators for E. urophylla × E. grandis and D. odorifera, respectively. Additionally, leaf morphological traits are related to the trade-off strategy exhibited by E. urophylla × E. grandis and D. odorifera based on N competition. This study demonstrated that physiological traits related to photosynthesis are reliable predictors of N nutrition and tree growth in mixed stands, while leaf morphological traits reflect the resource trade-off strategies of different tree species.

19.
Ying Yong Sheng Tai Xue Bao ; 35(1): 195-202, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511456

RESUMO

In order to understand the response and adaptation mechanisms of photosynthetic characteristics and growth for Cunninghamia lanceolata saplings in the subtropical region to global warming, we conducted the root-box warming experiment (ambient, ambient+4 ℃) at the Sanming Forest Ecosystem National Observation and Research Station in Fujian Province to investigate the effects of soil warming on the photosynthetic characteristics and growth of C. lanceolata saplings in different seasons. The results showed that the net photosynthetic rate (Pn) and stomatal conductance (gs) of C. lanceolata significantly decreased in summer compared with in spring and autumn. Soil warming had no effect on the Pn and gs of C. lanceolata. However, the interaction between warming and season significantly impacted the leaf water use efficiency (WUE). The tree height and ground diameter growth of C. lanceolata significantly increased in spring compared with in summer and autumn. Warming significantly reduced ground diameter growth, and it diminished the net diameter growth by 48.1% in autumn. However, warming had no impact on the tree height growth of C. lanceolata in each season. The specific leaf area, soluble sugar, and non-structural carbohydrates contents of C. lanceolata significantly improved in summer and autumn compared with in spring. Warming had rarely influence on leaf functional traits in each season. In conclusion, the response of photosynthesis for C. lanceolata to soil warming was insignificant. The photosynthesis of C. lanceolata exhibited significant seasonal dynamics, primarily controlled by gs. C. lanceolata adapted to soil warming by adjusting WUE, and it adjusted to high temperatures and drought stress in summer by increasing soluble sugar content and specific leaf area. The effect of warming on ground diameter growth of C. lanceolata was primarily driven by soil moisture. The seasonal difference in the growth of C. lanceolata was influenced by the photosynthesis of C. lanceolata and the trade-off between the utilization and storage of photosynthetic products.


Assuntos
Cunninghamia , Ecossistema , Carboidratos , Fotossíntese , Estações do Ano , Solo/química , Açúcares , Árvores/fisiologia
20.
Int J Biometeorol ; 68(5): 991-1004, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528211

RESUMO

An experimental study was conducted to assess the detrimental effect of ground-level ozone (O3) on garlic physiology and to find out appropriate control measures against ground-level O3, at TNAU-Horticultural Research farm, Udhagamandalam. Elevated ground ozone levels significantly decreased garlic leaf chlorophyll, photosynthetic rate, stomatal conductance, total soluble solids and pungency. The garlic chlorophyll content was highest in ambient ozone level and lowest in elevated ozone@200 ppb, highest stomatal conductance was recorded in ambient ozone with foliar spray of 3%Panchagavya, and the lowest was observed in elevated ozone@200 ppb. Since the elevated O3 had reduced in garlic photosynthetic rate significantly the lowest was observed in elevated O3@200 ppb and the highest photosynthetic rate was observed in ambient Ozone with foliar spray 3% of panchagavya after a week. The antioxidant enzymes of garlic were increased with increased concentration of tropospheric ozone. The highest catalase (60.97 µg of H2O2/g of leaf) and peroxidase (9.13 ΔA/min/g of leaf) concentration was observed at 200 ppb elevated ozone level. Garlic pungency content was highest in ambient ozone with foliar spray of 0.1% ascorbic acid and the lowest was observed under elevated O3@200 ppb. Highest total soluble solids were observed in ambient ozone with foliar spray of 3%Panchagavya and the lowest observed in elevated ozone@200 ppb. Thus, tropospheric ozone has a detrimental impact on the physiology of crops, which reduced crop growth and yield. Under elevated O3 levels, ascorbic acid performed well followed by panchagavya and neem oil. The antioxidant such as catalase and peroxidase had positive correlation among themselves and had negative correlation with chlorophyll content, stomatal conductance, photosynthetic rate, pungency and TSS. The photosynthetic rate has high positive correlation with chlorophyll content, pungency and TSS. Correlation analysis confirmed the negative effects of tropospheric ozone and garlic gas exchange parameters and clove quality. The ozone protectants will reduce stomatal opening by which the entry of O3 in to the cell will be restricted and other hand they also will alleviate ROS and allied stresses.


Assuntos
Clorofila , Alho , Ozônio , Fotossíntese , Folhas de Planta , Ozônio/farmacologia , Alho/efeitos dos fármacos , Clorofila/metabolismo , Clorofila/análise , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Peroxidase/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Poluentes Atmosféricos , Ácido Ascórbico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA