RESUMO
The management of mine tailings (MT) is commonly workload heavy, intrusive, and expensive. Phytostabilization offers a promising approach for MT management; however, it poses challenges due to the unfavorable physicochemical properties of these wastes. Nevertheless, native microorganisms capable of supporting plant growth and development could enhance the efficacy of phytostabilization. This study assesses the biological activity of microbial communities from the root zone of Baccharis linearis, which is naturally present in MT, in order to evaluate their biotechnological potential for phytostabilization. The root zone and bulk samples were collected from B. linearis plants located within a MT in the Mediterranean zone of Chile. Enzyme activities related to the cycling of C, N, and P were assessed. The community-level physiological profile was evaluated using the MicroRespTM system. Bacterial plant growth-promoting (PGP) traits and colony forming units (CFU) were evaluated through qualitative and microbiological methods, respectively. CFU, enzyme activities, and CLPP were higher in the root zone compared with the bulk samples. Five bacterial strains from the root zone exhibited PGP traits such as P solubilization and N acquisition, among others. The presence of microbial communities in the root zone of B. linearis with PGP traits suggests their potential to enhance the ecological management of MT through phytostabilization programs.
RESUMO
Copper (Cu) mining has to address a critical environmental issue related to the disposal of heavy metals and metalloids (HMs). Due to their deleterious effects on living organisms, Cu and arsenic (As) have gained global attention, and thus their monitoring in the environment is an important task. The aims of this study were: 1) to evaluate the alteration of soil enzyme activities (EAs) and soil microbial functional diversity with Cu/As contamination, and 2) to select the most reliable biochemical indicators of Cu/As contamination. A twelve-week soil experiment was performed with four increasing levels of Cu, As, and Cu/As from 150/15 to 1000/100 mg Cu/As kg-1. Soil enzyme activities and soil community-level physiological profile (CLPP) using MicroResp™ were measured during the experiment. Results showed reduced EAs over time with increasing Cu and Cu/As levels. The most Cu-sensitive EAs were dehydrogenase, acid phosphatase, and arylsulfatase, while arginine ammonification might be related to the resilience of soil microbial communities due to its increased activity in the last experimental times. There was no consistent response to As contamination with reduced individual EAs at specific sampling times, being urease the only EA negatively affected by As. MicroResp™ showed reduced carbon (C) substrate utilization with increasing Cu levels indicating a community shift in C acquisition. These results support the use of specific EAs to assess the environmental impact of specific HMs, being also the first assessment of EAs and the use of CLPP (MicroResp™) to study the environmental impact in Cu/As contaminated soils.
Assuntos
Arsênio/farmacologia , Cobre/farmacologia , Microbiologia do Solo , Poluentes do Solo/farmacologia , Fosfatase Ácida/metabolismo , Arilsulfatases/metabolismo , Oxirredutases/metabolismo , Solo/química , Urease/metabolismoRESUMO
ABSTRACT Background Low back pain (LBP) is a common musculoskeletal condition among elders and is associated with falls. However, the underlying biological risk factors for falling among elders with LBP has been poorly investigated. The Physiological Profile Assessment (PPA) is a validated fall-risk assessment tool that involves the direct assessment of sensorimotor abilities and may contribute to the understanding of risk factors for falls among elders with LBP. Objective To assess fall risk using the PPA in elders with and without LBP. Method This is an observational, comparative, cross-sectional study with elders aged ≥65 years. The present study was conducted with a subsample of participants from the Back Complaints in the Elders (BACE) - Brazil study. Fall risk was assessed using the PPA, which contains five tests: visual contrast sensitivity, hand reaction time, quadriceps strength, lower limb proprioception, and postural sway. Results Study participants included 104 individuals with average age of 72.3 (SD=4.0) years, divided into two groups: GI) 52 participants with LBP; GII) 52 participants without LBP. The participants with LBP had a significantly higher fall risk (1.10 95% CI 0.72 to 1.48), greater postural sway (49.78 95% CI 13.54 to 86.01), longer reaction time (58.95 95% CI 33.24 to 84.65), and lower quadriceps strength (–4.42 95% CI –8.24 to –0.59) compared to asymptomatic participants. There was no significant difference for vision and proprioception tests between LBP and non-LBP participants. Conclusion Elders with LBP have greater risk for falls than those without LBP. Our results suggest fall-risk screening may be sensible in elders with LBP.
RESUMO
The aims of the present study were to investigate the relationship of aerobic and anaerobic parameters with 400 m performance, and establish which variable better explains long distance performance in swimming. Twenty-two swimmers (19.1±1.5 years, height 173.9±10.0 cm, body mass 71.2±10.2 kg; 76.6±5.3% of 400 m world record) underwent a lactate minimum test to determine lactate minimum speed (LMS) (i.e., aerobic capacity index). Moreover, the swimmers performed a 400 m maximal effort to determine mean speed (S400m), peak oxygen uptake ([Formula: see text]) and total anaerobic contribution (CANA). The CANA was assumed as the sum of alactic and lactic contributions. Physiological parameters of 400 m were determined using the backward extrapolation technique ([Formula: see text] and alactic contributions of CANA) and blood lactate concentration analysis (lactic anaerobic contributions of CANA). The Pearson correlation test and backward multiple regression analysis were used to verify the possible correlations between the physiological indices (predictor factors) and S400m (independent variable) (p < 0.05). Values are presented as mean ± standard deviation. Significant correlations were observed between S400m (1.4±0.1 m·s-1) and LMS (1.3±0.1 m·s-1; r = 0.80), [Formula: see text] (4.5±3.9 L·min-1; r = 0.72) and CANA (4.7±1.5 L·O2; r= 0.44). The best model constructed using multiple regression analysis demonstrated that LMS and [Formula: see text] explained 85% of the 400 m performance variance. When backward multiple regression analysis was performed, CANA lost significance. Thus, the results demonstrated that both aerobic parameters (capacity and power) can be used to predict 400 m swimming performance.
RESUMO
The present study aimed to describe heart rate (HR) responses during a simulated Olympic boxing match and examine physiological parameters of boxing athletes. Ten highly trained Olympic boxing athletes (six men and four women) performed a maximal graded exercise test on a motorized treadmill to determine maximal oxygen uptake (52.2 mL · kg(-1) · min(-1) ± 7.2 mL · kg(-1) · min(-1)) and ventilatory thresholds 1 and 2. Ventilatory thresholds 1 and 2 were used to classify the intensity of exercise based on respective HR during a boxing match. In addition, oxygen uptake (VÌO2) was estimated during the match based on the HR response and the HR-VÌO2 relationship obtained from a maximal graded exercise test for each participant. On a separate day, participants performed a boxing match lasting three rounds, 2 minutes each, with a 1-minute recovery period between each round, during which HR was measured. In this context, HR and VÌO2 were above ventilatory threshold 2 during 219.8 seconds ± 67.4 seconds. There was an increase in HR and VÌO2 as a function of round (round 3 < round 2 < round 1, P < 0.0001). These findings may direct individual training programs for boxing practitioners and other athletes.