Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
J Environ Sci (China) ; 148: 321-335, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095168

RESUMO

Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Reatores Biológicos/microbiologia , Metano/metabolismo , Metano/análise , Carbono/metabolismo , Carbono/análise , China , Biocombustíveis
2.
J Environ Sci (China) ; 148: 579-590, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095191

RESUMO

This work established a quantitative method to access the shear stability of aerobic granular sludge (AGS) and validated its feasibility by using the mature AGS from a pilot-scale (50 tons/day) membrane bioreactor (MBR) for treating real municipal wastewater. The results showed that the changing rate (ΔS) of the peak area (S) of granule size distribution (GSD) exhibited an exponential relationship (R2≥0.76) with the shear time (y=a-b·cx), which was a suitable indicative index to reflect the shear stability of different AGS samples. The limiting granule size (LGS) was defined and proposed to characterize the equilibrium size for AGS after being sheared for a period of time, whose value in terms of Dv50 showed high correlation (R2=0.92) with the parameter a. The free Ca2+ (28.44-34.21 mg/L) in the influent specifically interacted with polysaccharides (PS) in the granule's extracellular polymeric substance (EPS) as a nucleation site, thereby inducing the formation of Ca precipitation to enhance its Young's modulus, while Ca2+ primarily interacted with PS in soluble metabolic product (SMP) during the initial granulation process. Furthermore, the Young's modulus significantly affected the parameter a related to shear stability (R2=0.99). Since the parameter a was more closely related (R2=1.00) to ΔS than that of the parameter b or c, the excellent correlation (R2=0.99) between the parameter a and the wet density further verified the feasibility of this method.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Águas Residuárias/química , Membranas Artificiais , Aerobiose
3.
Bioresour Technol ; 413: 131433, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236908

RESUMO

Two parallel pilot-scale reactors were operated to investigate pollutant removal performance and metabolic pathways in elemental sulfur-driven autotrophic denitrification (SDAD) process under low temperature and after addition of external electron donors. The results showed that low temperature slightly inhibited SDAD (average total nitrogen removal of ∼4.7 mg L-1) while supplement of sodium thiosulfate (stage 2) and sodium acetate (stage 3) enhanced denitrification and secretion of extracellular polymeric substances (EPS), leading to the average removal rate of 0.75 and 1.01 kg N m-3 d-1, respectively with over twice higher total EPS. Correspondingly, nitrogen and sulfur related microbial metabolisms especially nitrite reductase and nitric oxide reductase encoding were promoted by genera including Thermomonas and Thiobacillus. The variations revealed that extra sodium acetate improved denitrification and enriched more SDAD-related microorganisms compared with sodium thiosulfate, which potentially catalyzed the refinement of practical strategies for optimizing denitrification in low carbon to nitrogen ratio wastewater treatment.

4.
Int J Biol Macromol ; 279(Pt 4): 135354, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260659

RESUMO

This study presents the pilot-scale production of highly efficient real respiratory masks enhanced by bacterial cellulose nanofibers (BCNFs). The BCNFs suspension was deposited onto tissue paper substrates using fog spray technique with three BCNFs grammage levels of 0.5, 1, and 2 g/m2, followed by freeze drying. Also, two continuous and batch welding processes have been used to construct the core structure of the masks. Field emission scanning electron microscopy (FE-SEM) confirmed the uniform distribution and size of fog-sprayed BCNFs and their pore networks. With increase in BCNFs grammage, the adsorption efficiency of masks increased in both continuous and batch production methods. The mask produced through batch processing showed the highest efficiency of 99.2 % (N99) for the particulate matter of 0.3 µm, while the maximum corresponding efficiency value in continuous processing was 95.4 % (N95). The pressure drops of the masks increased with the increase in BCNFs grammage in both methods. The maximum pressure drops of N95 and N99 masks obtained were 112 ± 10 Pa and 128 ± 8 Pa, respectively. Notably, the filtration efficacy of masks was preserved when subjected to relative humidity fluctuations ranging from 30 % to 70 %. The successful findings of this study offer significant promise for future air filtration applications.

5.
Water Res ; 266: 122407, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39276473

RESUMO

Phosphorus recovery via vivianite extraction from digested sludge has recently gained considerable interest. The separation of vivianite was demonstrated earlier at the pilot scale, and operational parameters were optimized. In this study, we tested the robustness of this technology by changing the sludge characteristics, such as dry matter, and via that, sludge viscosity, and vivianite particle size. It was proven that the main factor influencing recovery was the concentration of vivianite in the feed. The technology can extract vivianite even when the sludge has higher dry matter (1.8% - 3.3%) and, therefore, higher viscosity. Smaller vivianite sizes (< 10 µm) can still be recovered but at a lower rate. This made magnetic separation applicable to a wide range of wastewater treatment plants.

6.
Water Res ; 266: 122425, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265214

RESUMO

Recently, great efforts have been made to advance the pilot-scale and engineering-scale applications of Fenton-like processes using various nano-metal catalysts (including nanosized metal-based catalysts, smaller nanocluster catalysts, and single-atom catalysts, etc.). This step is essential to facilitate the practical applications of advanced oxidation processes (AOPs) for these highly active nano-metal catalysts. Before large-scale implementation, these nano-metal catalysts must be converted into the effective catalyst modules (such as catalytic membranes, fluidized beds, or polypropylene sphere suspension systems), as it is not feasible to use suspended powder catalysts for large-scale treatment. Therefore, the pilot-scale and engineering applications of nano-metal catalysts in Fenton-like systems in recent years is exciting. In addition, the combination of life cycle assessment (LCA) and techno-economic analysis (TEA) can provide a useful support tool for engineering scale Fenton-like applications. This paper summarizes the designs and fabrications of various advanced modules based on nano-metal catalysts, analyzes the advantages and disadvantages of these catalytic modules, and further discusses their Fenton-like pilot scale or engineering applications. Concepts of future Fenton-like engineering applications of nano-metal catalysts were also discussed. In addition, current challenges and future expectations in pilot-scale or engineering applications are assessed in conjunction with LCA and TEA. These challenges require further technological advances to enable larger scale engineering applications in the future. The aim of these efforts is to increase the potential of nanoscale AOPs for practical wastewater treatment.

7.
Environ Monit Assess ; 196(9): 807, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133340

RESUMO

Application of sewage sludge as fertilizer can be beneficial for sustainable agriculture as it could largely account for nitrogen and phosphorus demand for crops and has lower costs compared to other disposal routes, e.g., incineration, and sanitary landfills. This study evaluates the feasibility of pilot-scale pelletization of sewage sludge for non-food crops (e.g., ornamental plants). The co-pelletization method was designed by mixing sewage sludge and binder (tapioca starch) at a 9:1 sludge-to-starch weight ratio. The amount of nitrogen (N), phosphorus (P), and potassium (K) of the resultant pellets were determined at 5.7%, 4.9%, and 0.2%, respectively. Following Malaysian and US Standards, non-essential elements and pathogenicity of the pelletized sewage sludge were measured below the predetermined limits and hence safe for agricultural application. The planting trial using 50% inorganic fertilizer + 50% sewage sludge pellets exhibited a promising result on the growth of the flowering plant Celosia plumosa, with having better dimension and color, 20% higher in height, 4% more chlorophyll content, 54% more leaf, 43% greater stem growth, and 27% more flowers compared to control. Likewise, the planting trial on Tagetes erecta resulted in 10.5% wider leaf, 10.6% heavier leaf dry weight, and 12.5% more chlorophyll content compared to control with full usage of inorganic fertilizer. By considering liquidities to operate the production facility, the economic analysis estimated that the production cost per ton of pelletized sewage sludge produced was USD 0.98.


Assuntos
Agricultura , Fertilizantes , Nitrogênio , Fósforo , Esgotos , Fósforo/análise , Nitrogênio/análise , Agricultura/métodos , Produtos Agrícolas , Nutrientes/análise , Potássio/análise , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Malásia , Manihot
8.
ACS Infect Dis ; 10(9): 3289-3303, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39118542

RESUMO

RNA editing pathway is a validated target in kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) that cause severe diseases in humans and livestock. An essential large protein complex, the editosome, mediates uridine insertion and deletion in RNA editing through a stepwise process. This study details the discovery of editosome inhibitors by screening a library of widely used human drugs using our previously developed in vitro biochemical Ribozyme Insertion Deletion Editing (RIDE) assay. Subsequent studies on the mode of action of the identified hits and hit expansion efforts unveiled compounds that interfere with RNA-editosome interactions and novel ligase inhibitors with IC50 values in the low micromolar range. Docking studies on the ligase demonstrated similar binding characteristics for ATP and our novel epigallocatechin gallate inhibitor. The inhibitors demonstrated potent trypanocidal activity and are promising candidates for drug repurposing due to their lack of cytotoxic effects. Further studies are necessary to validate these targets using more definitive gene-editing techniques and to enhance the safety profile.


Assuntos
Edição de RNA , Trypanosoma brucei brucei , Uridina , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Uridina/análogos & derivados , Uridina/farmacologia , Uridina/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Humanos , Avaliação Pré-Clínica de Medicamentos , Proteínas de Protozoários/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Catequina/farmacologia , Catequina/análogos & derivados , Catequina/química
9.
Chemosphere ; 364: 143128, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39159769

RESUMO

Reclaimed water poses environmental and human health risks due to residual organic micropollutants and pathogens. Ozonation of reclaimed water to control pathogens and trace organics is an important step in advanced water treatment systems for potable reuse of reclaimed water. Ensuring efficient pathogen reduction while controlling disinfection byproducts remains a significant challenge to implementing ozonation in reclaimed water reuse applications. This study aimed to investigate ozonation conditions using a plug flow reactor (PFR) to achieve effective pathogen removal/inactivation while minimizing bromate and N-Nitrosodimethylamine (NDMA) formation. The pilot scale study was conducted using three doses of ozone (0.7, 1.0 and 1.4 ozone/total organic carbon (O3/TOC) ratio) to determine the disinfection performance using actual reclaimed water. The disinfection efficiency was assessed by measuring total coliforms, Escherichia coli (E. coli), Pepper Mild Mottle Virus (PMMoV), Tomato Brown Rugose Fruit Virus (ToBRFV) and Norovirus (HNoV). The ozone CT values ranged from 1.60 to 13.62 mg min L-1, resulting in significant reductions in pathogens and indicators. Specifically, ozone treatment led to concentration reductions of 2.46-2.89, 2.03-2.18, 0.46-1.63, 2.23-2.64 and > 4 log for total coliforms, E. coli, PMMoV, ToBRFV, and HNoV, respectively. After ozonation, concentrations of bromate and NDMA increased, reaching levels between 2.8 and 12.0 µg L-1, and 28-40.0 ng L-1, respectively, for average feed water bromide levels of 86.7 ± 1.8 µg L-1 and TOC levels of 7.2 ± 0.1 mg L-1. The increases in DBP formation were pronounced with higher ozone dosages, possibly requiring removal/control in subsequent treatment steps in some potable reuse applications.


Assuntos
Desinfecção , Ozônio , Purificação da Água , Desinfecção/métodos , Purificação da Água/métodos , Projetos Piloto , Escherichia coli/efeitos dos fármacos , Desinfetantes/análise , Água Potável/microbiologia , Água Potável/química , Norovirus/efeitos dos fármacos , Microbiologia da Água , Bromatos/análise
10.
Antioxidants (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061860

RESUMO

A multi-strain yeast-based paraprobiotic (MsYbP) comprising inactive cells and polysaccharides (ß-glucan, mannan oligosaccharides, and oligosaccharides) derived from Saccharomyces cerevisiae and Cyberlindnera jadinii could ensure optimal growth and health in farmed fish. This study assessed the impact of an MsYbP on the growth, immune responses, antioxidant capacities, and liver health of largemouth bass (Micropterus salmoides) through lab-scale (65 days) and pilot-scale (15 weeks) experiments. Two groups of fish were monitored: one fed a control diet without the MsYbP and another fed 0.08% and 0.1% MsYbP in the lab-scale and pilot-scale studies, respectively (referred to as YANG). In the lab-scale study, four replicates were conducted, with 20 fish per replicate (average initial body weight = 31.0 ± 0.8 g), while the pilot-scale study involved three replicates with approximately 1500 fish per replicate (average initial body weight = 80.0 ± 2.2 g). The results indicate that the MsYbP-fed fish exhibited a significant increase in growth in both studies (p < 0.05). Additionally, the dietary MsYbP led to a noteworthy reduction in the liver function parameters (p < 0.05), such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (AKP), and hepatic nuclear density, indicating improved liver health. Furthermore, the dietary MsYbP elevated the antioxidative capacity of the fish by reducing their malondialdehyde levels and increasing their levels and gene expressions related to antioxidative markers, such as total antioxidant ca-pacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), catalase (CAT), nuclear factor erythroid 2-related factor 2 (nrf2) and kelch-1ike ech-associated protein (keap1) in both studies (p < 0.05). In terms of hepatic immune responses, the lab-scale study showed an increase in inflammation-related gene expressions, such as interleukin-1ß (il-1ß) and transforming growth factor ß1 (tgf-ß1), while the pilot-scale study significantly suppressed the expressions of genes related to inflammatory responses, such as tumor necrosis factor α (tnfα) and interleukin-10 (il-10) (p < 0.05). In summary, our findings underscore the role of dietary multi-strain yeast-based paraprobiotics in enhancing the growth and liver health of largemouth bass, potentially through increased antioxidative capacity and the modulation of immune responses, emphasizing the significance of employing yeast-based paraprobiotics in commercial conditions.

11.
Environ Sci Pollut Res Int ; 31(34): 46994-47021, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985422

RESUMO

Microalgae cultivation in wastewater has been widely researched under laboratory conditions as per its potential to couple treatment with biomass production. Currently, only a limited number of published articles consider outdoor and long-term microalgae-bacteria cultivations in real wastewater environmental systems. The scope of this work is to describe microalgal cultivation steps towards high-rate algal pond (HRAP) scalability and identify key parameters that play a major role for biomass productivity under outdoor conditions and long-term cultivations. Reviewed pilot-scale HRAP literature is analysed using multivariate analysis to highlight key productivity parameters within environmental and operational factors. Wastewater treatment analysis indicated that HRAP can effectively remove 90% of NH4+, 70% of COD, and 50% of PO43-. Mean reference values of 210 W m-2 for irradiation, 18 °C for temperature, pH of 8.2, and HRT of 7.7 are derived from pilot-scale cultivations. Microalgae biomass productivity at a large scale is governed by solar radiation and NH4+ concentration, which are more important than retention time variations within investigated studies. Hence, selecting the correct type of location and a minimum of 70 mg L-1 of NH4+ in wastewater will have the greatest effect in microalgae productivity. A high nutrient wastewater content increases final biomass concentrations but not necessarily biomass productivity. Pilot-scale growth rates (~ 0.54 day-1) are half those observed in lab experiments, indicating a scaling-up bottleneck. Microalgae cultivation in wastewater enables a circular bioeconomy framework by unlocking microalgal biomass for the delivery of an array of products.


Assuntos
Biomassa , Microalgas , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Lagoas , Projetos Piloto , Purificação da Água/métodos
12.
Water Res ; 261: 122050, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996731

RESUMO

Considering the high organic matter contents and pollutants in sewage sludge (SS) and food waste (FW), seeking green and effective technology for energy recovery and pollutant control is a big challenge. In this study, we proposed a integrated technology combing SS mass separation by hydrothermal pretreatment, methane production from co-digestion of hydrothermally treated sewage sludge (HSS) centrate and FW, and biochar production from co-pyrolysis of HSS cake and digestate with heavy metal immobilization for synergistic utilization of SS and FW. The results showed that the co-digestion of HSS centrate with FW reduced the NH4+-N concentration and promoted volatile fatty acids conversion, leading to a more robust anaerobic system for better methane generation. Among the co-pyrolysis of HSS cake and digestate, digestate addition improved biochar quality with heavy metals immobilization and toxicity reduction. Following the lab-scale investigation, the pilot-scale verification was successfully performed (except the co-digestion process). The mass and energy balance revealed that the produced methane could supply the whole energy consumption of the integrated system with 26.2 t biochar generation for treating 300 t SS and 120 t FW. This study presents a new strategy and technology validation for synergistic treatment of SS and FW with resource recovery and pollutants control.


Assuntos
Perda e Desperdício de Alimentos , Metano , Esgotos , Anaerobiose , Carvão Vegetal/química , Ácidos Graxos Voláteis , Metais Pesados , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
13.
Front Bioeng Biotechnol ; 12: 1395810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863495

RESUMO

Previous laboratory-scale studies have consistently shown that carbon-based conductive materials can notably improve the anaerobic digestion of food waste, typically employing reactors with regular capacity of 1-20 L. Furthermore, incorporating riboflavin-loaded conductive materials can further address the imbalance between fermentation and methanogenesis in anaerobic systems. However, there have been few reports on pilot-scale investigation. In this study, a 10 m2 of riboflavin modified carbon cloth was incorporated into a pilot-scale (2 m3) food waste anaerobic reactor to improve its treatment efficiency. The study found that the addition of riboflavin-loaded carbon cloth can increase the maximum organic loading rate (OLR) by 40% of the pilot-scale reactor, compared to the system using carbon cloth without riboflavin loading, while ensuring efficient operation of the reaction system, effectively alleviating system acidification, sustaining methanogen activity, and increasing daily methane production by 25%. Analysis of the microbial community structure revealed that riboflavin-loaded carbon cloth enriched the methanogenic archaea in the genera of Methanothrix and Methanobacterium, which are capable of extracellular direct interspecies electron transfer (DIET). And metabolic pathway analysis identified the methane production pathway, highly enriched on the reduction of acetic acid and CO2 at riboflavin-loaded carbon cloth sample. The expression levels of genes related to methane production via DIET pathway were also significantly upregulated. These results can provide important guidance for the practical application of food waste anaerobic digestion engineering.

14.
Sci Total Environ ; 946: 174253, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936713

RESUMO

The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.


Assuntos
Peróxido de Hidrogênio , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Preparações Farmacêuticas , Técnicas Eletroquímicas , Oxirredução , Águas Residuárias/química , Ferro/química
15.
J Hazard Mater ; 474: 134840, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38865923

RESUMO

Electrochemical advanced oxidation processes (EAOP) have shown great potential for the abatement of complexed heavy metals, such as metal-EDTA complexes, in recent studies. While removal of metal-EDTA complexes has been extensively examined in bench-scale reactors, much less attention has been given to the efficacy of this process at larger scale. In this study, we utilize a 72 L pilot-scale continuous flow system comprised of six serpentine flow channels and 90 pairs of flow-through electrodes for the degradation of Ni-EDTA complexes and removal of Ni from solution. The influence of a range of key operating parameters including flow rate, current density and initial Ni-EDTA concentration on rate and extent of Ni-EDTA degradation and Ni removal were examined. Our results showed that at a feed flow rate of 36 L h-1, current density of 5 mA cm-2 and initial Ni-EDTA concentration of 1 mM, the pilot-scale system achieved 74 % total Ni removal, 78 % total EDTA removal and 40 % TOC removal with energy consumption of 13.6 kWh m-3 order-1 and energy efficiency of 7.9 g kWh-1 for total Ni removal. A mechanistically-based kinetic model, which was developed in our previous bench-scale study, provides a satisfactory description of the experimental results obtained in the pilot-scale unit. Long term operation of the pilot-scale unit resulted in corrosion of PbO2 anode along with inorganic scaling as well as organic fouling on the PbO2 surface resulting in an obvious decline in Ni-EDTA degradation. Overall, the results of this study suggest that large scale anodic oxidation of wastewaters containing metal-organic complexes is an effective means of degrading organic ligands thereby enabling removal of the metal at the cathode. However, additional efforts are required to enhance the durability of the anode material and reduce material costs and energy consumption.

16.
Environ Sci Technol ; 58(22): 9471-9486, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776077

RESUMO

To date, dozens of pilot-scale microbial fuel cell (MFC) devices have been successfully developed worldwide for treating various types of wastewater. The availability and configurations of separators are determining factors for the economic feasibility, efficiency, sustainability, and operability of these devices. Thus, the concomitant advances between the separators and pilot-scale MFC configurations deserve further clarification. The analysis of separator configurations has shown that their evolution proceeds as follows: from ion-selective to ion-non-selective, from nonpermeable to permeable, and from abiotic to biotic. Meanwhile, their cost is decreasing and their availability is increasing. Notably, the novel MFCs configured with biotic separators are superior to those configured with abiotic separators in terms of wastewater treatment efficiency and capital cost. Herein, a highly comprehensive review of pilot-scale MFCs (>100 L) has been conducted, and we conclude that the intensive stack of the liquid cathode configuration is more advantageous when wastewater treatment is the highest priority. The use of permeable biotic separators ensures hydrodynamic continuity within the MFCs and simplifies reactor configuration and operation. In addition, a systemic comparison is conducted between pilot-scale MFC devices and conventional decentralized wastewater treatment processes. MFCs showed comparable cost, higher efficiency, long-term stability, and significant superiority in carbon emission reduction. The development of separators has greatly contributed to the availability and usability of MFCs, which will play an important role in various wastewater treatment scenarios in the future.


Assuntos
Águas Residuárias , Purificação da Água , Eletrodos , Projetos Piloto , Eliminação de Resíduos Líquidos/métodos
17.
Sci Total Environ ; 939: 173592, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810745

RESUMO

This study provides a comprehensive analysis of the vacuum drying process for sludge drying, with a focus on optimizing energy efficiency and emission control. The study used both lab-scale static and pilot-scale vacuum drying systems to test various parameters like vacuum levels, heat source temperatures, and sludge thicknesses. The results indicated that optimal drying conditions were achieved at a vacuum level of -0.06 MPa, a heat temperature of 140 °C, and a sludge thickness of 3.4 mm, where the drying rate reaches 0.13278 g·g-1·min-1. The study underscores the significant influence of vacuum level, temperature, and sludge thickness on drying rates. The Page model was used to analyze drying kinetics, elucidating how changes in these parameters affect drying characteristics. Furthermore, the study also examined the pollutant emissions and energy efficiency at the pilot scale. It found that high vacuum environments could efficiently dry sludge using low-temperature heat source, leading to average energy consumption per unit evaporation of 3020.29 kJ/kg, which is lower compared to traditional methods. By harnessing low-grade industrial waste heat, this can be further reduced to 875.76 kJ/kg. This study offers valuable insights for sustainable sludge management systems, highlighting the environmental and economic benefits of vacuum drying technology. The detailed experimental approach and thorough analysis make a significant contribution to the field of the sludge drying.

18.
J Environ Manage ; 360: 121108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754189

RESUMO

A novel air-lifting loop reactor combines anoxic, oxic, and settling zones to achieve organic and nutrient removal, as well as solid-liquid separation. To address sludge settling ability and operation stability issues caused by low dissolved oxygen in aerobic zones, this study proposes using modified polypropylene carriers to establish a fixed-film activated sludge (IFAS) system. A pilot-scale demonstration of the IFAS-based air-lifting loop reactor is conducted, and the results show successful operation for approximately 300 days. The pilot-scale reactor achieves a maximum aerobic granulation ratio of 16% in the bulk liquid. The IFAS system contributes to efficient removal of organic matter (96%) and nitrogen (94%) by facilitating simultaneous nitrification and denitrification, as well as fast solid-liquid separation with a low sludge volume index of 34 mL/g. Microbial analysis reveals enrichment of functional bacteria involved in nitrification, denitrification, and flocculation throughout the operation process.


Assuntos
Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Desnitrificação , Nitrificação , Projetos Piloto
19.
Bioresour Technol ; 401: 130716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641301

RESUMO

Oleanolic acid and its derivatives are widely used in the pharmaceutical, agricultural, cosmetic and food industries. Previous studies have shown that oleanolic acid production levels in engineered cell factories are low, which is why oleanolic acid is still widely extracted from traditional medicinal plants. To construct a highly efficient oleanolic acid production strain, rate-limiting steps were regulated by inducible promoters and the expression of key genes in the oleanolic acid synthetic pathway was enhanced. Subsequently, precursor pool expansion, pathway refactoring and diploid construction were considered to harmonize cell growth and oleanolic acid production. The multi-strategy combination promoted oleanolic acid production of up to 4.07 g/L in a 100 L bioreactor, which was the highest level reported.


Assuntos
Ácido Oleanólico , Saccharomyces cerevisiae , Ácido Oleanólico/biossíntese , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Reatores Biológicos , Engenharia Metabólica/métodos , Engenharia Genética/métodos , Regiões Promotoras Genéticas
20.
Bioresour Technol ; 401: 130715, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641304

RESUMO

To mitigate the environmental risks posed by the accumulation of antibiotic mycelial dregs (AMDs), this study first attempted over 200 tons of mass production fermentation (MP) using tylosin and spectinomycin mycelial dregs alongside pilot-scale fermentation (PS) for comparison, utilizing the integrated-omics and qPCR approaches. Co-fermentation results showed that both antibiotics were effectively removed in all treatments, with an average removal rate of 92%. Antibiotic resistance gene (ARG)-related metabolic pathways showed that rapid degradation of antibiotics was associated with enzymes that inactivate macrolides and aminoglycosides (e.g., K06979, K07027, K05593). Interestingly, MP fermentations with optimized conditions had more efficient ARGs removal because homogenization permitted faster microbial succession, with more stable removal of antibiotic resistant bacteria and mobile genetic elements. Moreover, Bacillus reached 75% and secreted antioxidant enzymes that might inhibit horizontal gene transfer of ARGs. The findings confirmed the advantages of MP fermentation and provided a scientific basis for other AMDs.


Assuntos
Antibacterianos , Fermentação , Espectinomicina , Tilosina , Tilosina/farmacologia , Antibacterianos/farmacologia , Espectinomicina/farmacologia , Micélio/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Biodegradação Ambiental , Genes Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA