Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Water Res X ; 24: 100238, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39155948

RESUMO

Water disinfection by copper vessels has been prevalent over thousands of years. Unfortunately, people are still suffering from the bacterial pollution in drinking water. Here we show that, only through steeping with tiny amounts of common plant leaves, the room-temperature water in copper pots has unexpectedly high antibacterial ability. Remarkably, copper ions released from copper pots into water are in concentrations lower than the WHO safety threshold for drinking water, and have effective antibacterial ability when water contains specific leave components (polyphenols and/or lignin). Our computations show that the key to enhance antibacterial ability is the great increase in the proportion of Cu+ induced by aromatic rings in these leave components, which has been demonstrated by our experiments. The findings may disclose the mystery of copper vessels for water disinfection, and more importantly, provide effective antibacterial applications in industries and daily lives, by safely using copper ions together with biocompatible natural substances.

2.
J Med Signals Sens ; 14: 10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993202

RESUMO

Fabricating three-dimensional (3D) scaffolds is attractive due to various advantages for tissue engineering, such as cell migration, proliferation, and adhesion. Since cell growth depends on transmitting nutrients and cell residues, naturally vascularized scaffolds are superior for tissue engineering. Vascular passages help the inflow and outflow of liquids, nutrients, and waste disposal from the scaffold and cell growth. Porous scaffolds can be prepared by plant tissue decellularization which allows for the cultivation of various cell lines depending on the intended application. To this end, researchers decellularize plant tissues by specific chemical and physical methods. Researchers use plant parts depending on their needs, for example, decellularizing the leaves, stems, and fruits. Plant tissue scaffolds are advantageous for regenerative medicine, wound healing, and bioprinting. Studies have examined various plants such as vegetables and fruits such as orchid, parsley, spinach, celery, carrot, and apple using various materials and techniques such as sodium dodecyl sulfate, Triton X-100, peracetic acid, deoxyribonuclease, and ribonuclease with varying percentages, as well as mechanical and physical techniques like freeze-thaw cycles. The process of data selection, retrieval, and extraction in this review relied on scholarly journal publications and other relevant papers related to the subject of decellularization, with a specific emphasis on plant-based research. The obtained results indicate that, owing to the cellulosic structure and vascular nature of the decellularized plants and their favorable hydrophilic and biological properties, they have the potential to serve as biological materials and natural scaffolds for the development of 3D-printing inks and scaffolds for tissue engineering.

3.
Sci Total Environ ; 940: 173689, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38825203

RESUMO

Atmospheric particulate matter (PM) pollution is one of the world's most serious environmental challenges, and it poses a significant threat to environmental quality and human health. Biomagnetic monitoring of PM has great potential to improve spatial resolution and provide alternative indicators for large area measurements, with respect and complementary to standard air quality monitoring stations. In this study, 160 samples of evergreen plant leaves were collected from park green spaces within five different functional areas of Shanghai. Magnetic properties were investigated to understand the extent and nature of particulate pollution and the possible sources, and to assess the suitability of various plant leaves for urban particulate pollution monitoring. The results showed that magnetic particles of the plant leaf-adherent PM were predominantly composed of pseudo-single domain (PSD) and multi-domain (MD) ferrimagnetic particles. Magnolia grandiflora, as a large evergreen arbor with robust PM retention capabilities, proved to be a more suitable candidate for monitoring urban particulate pollution compared to Osmanthus fragrans, a small evergreen arbor, and Aucuba japonica Thunb. var. variegata and Photinia serratifolia, evergreen shrubs. Meanwhile, there were significant differences in the spatial distribution of the magnetic particle content and heavy metal enrichment of the samples, mainly showing regional variations of industrial area > traffic area > commercial area > residential area > clean area. Additionally, the combination with the results of scanning electron microscopy, shows that industrial production (metal smelting, coal burning), transport and other activities are the main sources of particulate pollution. Plant leaves can be used as an effective tool for urban particulate pollution monitoring and assessment of atmospheric particulate pollution characteristics, and the technique provided useful information on particle size, mineralogy and possible sources.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Material Particulado/análise , Monitoramento Ambiental/métodos , China , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise , Folhas de Planta/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-38832855

RESUMO

During a study on the diversity of culturable actinobacteria from coastal halophytes in Thailand, strain LSe6-5T was isolated from leaves of sea purslane (Sesuvium portulacastrum L.), and a polyphasic approach was employed to determine its taxonomic position. The 16S rRNA gene sequences analysis indicated that the strain was most closely related to Klenkia brasiliensis Tu 6233T (99.2 %), Klenkia marina YIM M13156T (99.1 %), and Klenkia terrae PB261T (98.7 %). The genome of strain LSe6-5T was estimated to be 4.33 Mbp in size, with DNA G+C contents of 74.3%. A phylogenomic tree based on whole-genome sequences revealed that strain LSe6-5T formed a clade with Klenkia marina DSM 45722T, indicating their close relationship. However, the average nucleotide identity (ANI)-blast, ANI-MUMmer, and dDDH values between strain LSe6-5T with K. marina DSM 45722T (87.1, 88.9, and 33.0 %) were below the thresholds of 95-96 % ANI and 70 % dDDH for identifying a novel species. Furthermore, strain LSe6-5T showed morphological and chemotaxonomic characteristics of the genus Klenkia. Cells were motile, rod-shaped, and Gram-stain-positive. Optimal growth of strain LSe6-5T occurred at 28 °C, pH 7.0, and 0-3 % NaCl. The whole-cell hydrolysates contained meso-diaminopimelic acid as the diagnostic diamino acid, with galactose, glucose, mannose, and ribose as whole-cell sugars. The predominant menaquinones were MK-9(H4) and MK-9(H0). The polar lipid profile was composed of diphosphatidylglycerol, hydroxyphosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, an unidentified phospholipid, and an unidentified lipid. Major cellular fatty acids were iso-C15 : 0, iso-C16 : 0, and iso-C17 : 0. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, it is supported that strain LSe6-5T represents a novel species of the genus Klenkia, for which the name Klenkia sesuvii sp. nov. is proposed. The type strain is strain LSe6-5T (=TBRC 16417T= NBRC 115929T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , Folhas de Planta , RNA Ribossômico 16S , Plantas Tolerantes a Sal , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Folhas de Planta/microbiologia , Tailândia , Plantas Tolerantes a Sal/microbiologia , DNA Bacteriano/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfolipídeos/análise , Sequenciamento Completo do Genoma , Genoma Bacteriano
5.
Front Plant Sci ; 15: 1335850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571709

RESUMO

Fungi play a pivotal role in fermentation processes, influencing the breakdown and transformation of metabolites. However, studies focusing on the effects of fungal-metabolite correlations on leaf fermentation quality enhancement are limited. This study investigated specific metabolites and fungi associated with high- and low-quality fermented plant leaves. Their changes were monitored over fermentation periods of 0, 8, 16, and 24 days. The results indicated that organoheterocyclic compounds, lipids, lipid-like molecules, organic nitrogen compounds, phenylpropanoids, and polyketides were predominant in high-quality samples. The fungi Saccharomyces (14.8%) and Thermoascus (4.6%) were predominantly found in these samples. These markers exhibited significant changes during the 24-day fermentation period. The critical influence of fungal community equilibrium was demonstrated by interspecies interactions (e.g., between Saccharomyces and Eurotium). A co-occurrence network analysis identified Saccharomyces as the primary contributor to high-quality samples. These markers collectively enhance the quality and sensory characteristics of the final product.

6.
Plant Cell Environ ; 47(7): 2597-2613, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38549236

RESUMO

Plant leaves contain multiple cell types which achieve distinct characteristics whilst still coordinating development within the leaf. The bundle sheath possesses larger individual cells and lower chloroplast content than the adjacent mesophyll, but how this morphology is achieved remains unknown. To identify regulatory mechanisms determining bundle sheath cell morphology we tested the effects of perturbing environmental (light) and endogenous signals (hormones) during leaf development of Oryza sativa (rice). Total chloroplast area in bundle sheath cells was found to increase with cell size as in the mesophyll but did not maintain a 'set-point' relationship, with the longest bundle sheath cells demonstrating the lowest chloroplast content. Application of exogenous cytokinin and gibberellin significantly altered the relationship between cell size and chloroplast biosynthesis in the bundle sheath, increasing chloroplast content of the longest cells. Delayed exposure to light reduced the mean length of bundle sheath cells but increased corresponding leaf length, whereas premature light reduced final leaf length but did not affect bundle sheath cells. This suggests that the plant hormones cytokinin and gibberellin are regulators of the bundle sheath cell-chloroplast relationship and that final bundle sheath length may potentially be affected by light-mediated control of exit from the cell cycle.


Assuntos
Cloroplastos , Citocininas , Giberelinas , Luz , Oryza , Reguladores de Crescimento de Plantas , Folhas de Planta , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Oryza/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Citocininas/metabolismo , Citocininas/farmacologia , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Cloroplastos/metabolismo , Forma Celular/efeitos da radiação , Fatores de Tempo , Tamanho Celular/efeitos da radiação
7.
Plant J ; 118(6): 2296-2317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459738

RESUMO

Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.


Assuntos
Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , Técnicas de Genotipagem/métodos , Primers do DNA/genética , Locos de Características Quantitativas/genética , Oryza/genética , Triticum/genética , Solanum lycopersicum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Glycine max/genética , Biblioteca Gênica , Polimorfismo Genético , Produtos Agrícolas/genética , Genótipo
8.
Plant Cell Environ ; 47(5): 1471-1485, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38235913

RESUMO

Photosynthesis under oblique illumination has not been studied extensively despite being the prevailing light regime under natural conditions. We studied how photosynthetic rate (An) is affected by the geometrical arrangement between leaf lamina and light rays, in conjunction with key anatomical features; studied plant species selected based on the absence (homobaric) or the occurrence of bundle sheath extensions (BSEs; heterobaric) and the arrangement of these structures, that is, parallel (monocots) or reticulated (dicots). The direction of light ray affected leaf absorptance (Abs) and An; both were maximal when the angle of incidence of light on leaf surface (polar angle, θ) was 90°. For any lower θ, both Abs and An were higher when the angle between the leaf axis and the light rays (azimuthal angle, φ) was zero. The dependence of Abs and An from φ was only evident in monocots and, especially, in heterobaric compared to homobaric leaves. In some species, An was substantially higher than predicted from calculated photon flux density of oblique light. The occurrence of BSEs, especially in monocots, significantly alters leaf optical properties, resulting in more efficient photosynthesis under oblique illumination conditions.


Assuntos
Magnoliopsida , Fotossíntese , Folhas de Planta/anatomia & histologia
9.
Small ; 20(10): e2303966, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37907423

RESUMO

Multispectral/hyperspectral technologies can easily detect man-made objects in vegetation by subtle spectral differences between the object and vegetation, and powerful reconnaissance increases the demand for camouflage materials closely resembling vegetation spectra. However, previous biomimetic materials have only presented static colors that cannot change color, and camouflage in multiple bands is difficult to achieve. To address this challenge, inspiration is drawn from the color change of foliage, and a color-change model is proposed with active and static pigments embedded in a matrix medium. The color of a composite material is dominated by the colored active pigment, which conceals the color of the static pigments and the color is revealed when the active pigment fades. A color-changing biomimetic material (CCBM) is developed with a solution casting method by adopting microcapsuled thermochromic pigments and chrome titanate yellow pigments as fillers in a base film with polyvinyl alcohol and lithium chloride. A Kubelka-Munk four-flux model is constructed to optimize the component proportions of the CCBM. The material has a reversible color change, closely resembles the foliage spectrum in UV-vis-NIR ranges, and imitates the thermal behavior of natural foliage in the mid-infrared regime. These results provide a novel approach to multispectral and hyperspectral camouflage.

10.
Chinese Journal of Analytical Chemistry ; (12): 286-295,后插1-后插5, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1017653

RESUMO

A new method for simultaneous determination of 23 kinds of per-and polyfluoroalkyl substances(PFASs)(13 kinds of perfluoro carboxylic acids,4 kinds of perfluoro sulfonic acids,and 6 kinds of new substitutes)in plant leaf tissue by ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS)using automatic online solid phase extraction(SPE)to remove the matrix interference components in plant crude extracts was developed.The plant leaf samples were extracted twice with 1%formic acid-methanol solution,then evaporated to dry,redissolved with 70%methanol solution,and directly injected for analysis.After 23 kinds of target PFASs were purified automatically by online SPE with a WAX column,the six-way valve was switched to rinse PFASs onto an alkaline mobile phase system-compatible C18 analytical column.Then,the 23 kinds of target PFASs were separated within 16 min by gradient elution using a binary mobile phase system of methanol/water(Containing 0.4%ammonium hydroxide).Tandem mass spectrometry was performed in multiple reaction monitoring(MRM)mode for online detection of various PFASs,and quantification was carried out by internal standard method.The results of the method validation showed that satisfactory average recoveries of 23 kinds of PFASs in plant leaf samples(64.2%-125.5%),precision(relative standard deviations(RSDs)of 0.7%-12.8%),linearity(R2>0.990),and sensitivity(the detection limits(S/N=3)were in the range of 0.02-0.50 μg/kg)were achieved.Finally,this method was used to detect PFASs in the marine green tide algae(Enteromorpha prolifera)and several tree leaves,and a total of 6 kinds of PFASs were detected,in which PFBA was the main contaminant.Compared with the reported offline SPE methods,the proposed online SPE technique significantly simplified the sample pretreatment process and provided an automatic,simple,and environment-friendly method for the routine monitoring of legacy and emerging PFASs in plant tissues.

11.
Plant Environ Interact ; 4(2): 55-69, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37288161

RESUMO

As agricultural production is reaching its limits regarding outputs and land use, the need to further improve crop yield is greater than ever. The limited translatability from in vitro lab results into more natural growth conditions in soil remains problematic. Although considerable progress has been made in developing soil-growth assays to tackle this bottleneck, the majority of these assays use pots or whole trays, making them not only space- and resource-intensive, but also hampering the individual treatment of plants. Therefore, we developed a flexible and compact screening system named PhenoWell® in which individual seedlings are grown in wells filled with soil allowing single-plant treatments. The system makes use of an automated image-analysis pipeline that extracts multiple growth parameters from individual seedlings over time, including projected rosette area, relative growth rate, compactness, and stockiness. Macronutrient, hormone, salt, osmotic, and drought stress treatments were tested in the PhenoWell® system. The system is also optimized for maize with results that are consistent with Arabidopsis while different in amplitude. We conclude that the PhenoWell® system enables a high-throughput, precise, and uniform application of a small amount of solution to individually soil-grown plants, which increases the replicability and reduces variability and compound usage.

12.
Toxicol Rep ; 10: 269-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876028

RESUMO

Some therapeutic and beneficial health properties of the Theobroma cacao leaf have been documented. This study evaluated the ameliorative effect of Theobroma cacao-fortified feed against potassium bromate-induced oxidative damage in male Wistar rats. Thirty rats were randomly grouped into A-E. Except for E (the negative control), the rats in the other groups were administered 0.5 ml of 10 mg/kg body weight of potassium bromate daily using oral gavage and then allowed access to feed and water ad libitum. Groups B, C, and D were fed with 10 %, 20 %, and 30 % leaf-fortified feed respectively, while the negative and positive control (A) was fed with commercial feed. The treatment was carried out consecutively for fourteen days. In the liver and kidney, there was a significant increase (p < 0.05) in total protein concentration, a significant decrease (P < 0.05) in MDA level, and SOD activity in the fortified feed group compared to the positive control. Furthermore, in the serum, there was a significant increase (p < 0.05) in the albumin concentration, and ALT activity, and a significant decrease (p < 0.05) in urea concentration in the fortified feed groups compared to the positive control. The histopathology of the liver and kidney in the treated groups showed moderate cell degeneration compared to the positive control group. Antioxidant activity due to the presence of flavonoids and metal chelating activity of fiber in Theobroma cacao leaf could be responsible for the ameliorative effect of the fortified feed against potassium bromate-induced oxidative damage.

13.
Nutrients ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986057

RESUMO

Green leaf biomass is one of the largest underutilized sources of nutrients worldwide. Whether it is purposely cultivated (forage crops, duckweed) or upcycled as a waste stream from the mass-produced agricultural crops (discarded leaves, offcuts, tops, peels, or pulp), the green biomass can be established as a viable alternative source of plant proteins in food and feed processing formulations. Rubisco is a major component of all green leaves, comprising up to 50% of soluble leaf protein, and offers many advantageous functional features in terms of essential amino acid profile, reduced allergenicity, enhanced gelation, foaming, emulsification, and textural properties. Nutrient profiles of green leaf biomass differ considerably from those of plant seeds in protein quality, vitamin and mineral concentration, and omega 6/3 fatty acid profiles. Emerging technological improvements in processing fractions, protein quality, and organoleptic profiles will enhance the nutritional quality of green leaf proteins as well as address scaling and sustainability challenges associated with the growing global demand for high quality nutrition.


Assuntos
Produtos Agrícolas , Folhas de Planta , Folhas de Planta/química , Valor Nutritivo , Proteínas de Plantas/metabolismo , Minerais/análise
14.
Front Microbiol ; 14: 1143156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998405

RESUMO

The genus Bannoa is a small group of ballistoconidium-forming yeasts in the family Erythrobasidiaceae (Cystobasidiomycetes). Prior to this study, seven species belonging to this genus have been described and published. In this study, phylogenetic analyzes of Bannoa based on the combined sequences of the small ribosomal subunit (SSU) rRNA gene, the internal transcribed spacer (ITS) regions, the D1/D2 domains of the large subunit rRNA gene (LSU) and the translation elongation factor 1-α gene (TEF1-α) were conducted. Three new species, namely B. ellipsoidea, B. foliicola, and B. pseudofoliicola, were delimited and proposed based on morphological and molecular evidence. B. ellipsoidea was found to be closely related to the type strains of B. guamensis, B. hahajimensis, and B. tropicalis, but with 0.7-0.9% divergence (4-5 substitutions) in the LSU D1/D2 domains and 3.7-4.1% divergence (19-23 substitutions and one-two gaps) in the ITS regions. B. foliicola was found to belong to the same clade as B. pseudofoliicola from which it differed by 0.4% divergence (two substitutions) in the LSU D1/D2 domains and 2.3% divergence (13 substitutions) in the ITS regions. The distinguishing morphological characteristics of the three new species, with respect to closely related taxa, are discussed. The identification of these new taxa significantly increases the number of Bannoa that have been described on the surface of plant leaves. Additionally, a key for the identification of Bannoa species is provided.

15.
Probiotics Antimicrob Proteins ; 15(3): 614-629, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34825308

RESUMO

This aim of the study was to isolate and screen potential probiotics from Dioscorea villosa leaves. The potential isolate Y4 was obtained from the Dioscorea villosa leaves, and its ability to grow in a medium containing high NaCl concentrations (2-10%) indicated its negative hemolytic activity. Furthermore, Y4 demonstrated inhibitory activity against human pathogens, such as Klebsiella pneumonia, Staphylococcus aureus, Citrobacter koseri, and Vibrio cholerae, as well as towards a plant pathogen isolate OR-2 (obtained from Citrus sinensis). Some biologically important functional groups of Y4 metabolites, such as sulfoxide; aliphatic ether; 1, 2, 3-trisubstituted, tertiary alcohol: vinyl ether; aromatic amine; carboxylic acid; nitro compound; alkene mono-substituted; and alcohol, were identified through FTIR analysis. The 16S rRNA sequencing and subsequent phylogenetic tree analysis indicated that Y4 and OR-2 are the closest neighbors to Kocuria flava (GenBank accession no. MT773277) and Pantoea dispersa (GenBank accession no. MT766308), respectively. The potential isolate Y4 was found to exhibit adhesion, auto-aggregation, co-aggregation, and weak biofilm activity. It also exhibited a high level of antimicrobial activity and antibiotic susceptibility. The safety of K. flava Y4 isolate, which is proposed to be a probiotic, was evaluated through acute oral toxicity test and biogenic amine production test. Moreover, the preservation potential of isolate Y4 was assessed through application on fruits under different temperatures. Thus, our results confirmed that Kocuria flava Y4 is a prospective probiotic and could also be used for the preservation of fruits.


Assuntos
Dioscorea , Probióticos , Humanos , Dioscorea/genética , Filogenia , RNA Ribossômico 16S/genética , Estudos Prospectivos , Probióticos/farmacologia
16.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1016944

RESUMO

Aims@#This study focused on new fish feed additives that could supply a nutritional value and inhibit or eliminate mycotoxins. Four novel feed additives, including Albizia lebbeck (L.), Leucaena leucocephala leaf extracts, Serendipita indica and Bacillus megaterium were applied to contaminated fish feed; besides investigating the toxicity of these new fish feed additives.@*Methodology and results @#Our data exhibited that the different tested feed additives were not toxic for brine shrimp larvae or fish. Albizia lebbeck extract at a concentration 0.5% was highly effective in detoxifying mycotoxins with efficacy ratios of 88.01%, 93.89% and 92.89% for aflaB1, aflaG1 and CPA, respectively and L. leucocephala at 0.5% had efficacy ratios of 93.52% and 100% for aflaG1 and CPA, respectively. The addition of S. indica with a concentration of 0.75% was highly effective for the usage of good feed approximately free of mycotoxins, with efficacy ratios of 85.65%, 90.81% and 100% for aflaB1, aflaG1 and CPA, respectively. Moreover, B. megaterium, with a concentration of 0.75% was recommended for detoxification. @*Conclusion, significance and impact of study @#Studied new feed additives as feed additives in fish diets to eliminate mycotoxin with the potential of providing antioxidant activity. Results suggest that mycotoxins degradation can happen in vitro and in vivo by applying new fish feed additives in the fish diet.

17.
Sci Total Environ ; 855: 158700, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113807

RESUMO

In mangrove wetlands, leaves make up a high proportion of the plant biomass and can accumulate heavy metals from contaminated sediment. Despite this, it is still unclear how heavy metal concentrations in leaves change as they develop and how metals in senescence leaves are recycled back into the mangrove ecosystems during decomposition. The present study aims to investigate the dynamics of six heavy metals (Cu, Zn, Cr, Ni, Cd, and Pb) in leaves of two common mangrove plants, Avicennia marina and Kandelia obovata, at different stages of development (young, mature, and senescent) and leaf litter decomposition (from 0 to 20 weeks). Based on litterbag experiments in a subtropical mangrove swamp, both plant species showed similar trends in alternations of the six heavy metals during leaf development, that was, decreased in Cu and Zn but increased in Pb, while Cr, Ni, and Cd remained steady. All heavy metals in litter gradually increased in concentration during decomposition. By the end of the 20-weeks decomposition, the concentrations of Cu, Zn, and Cd in decayed leaves were comparable to those in sediment, with Cu, Zn, and Cd at approximately 18, 75, and 0.2 mg·kg-1, respectively, while Cr (66 mg·kg-1), Ni (65 mg·kg-1), and Pb (55 mg·kg-1) were lower than those in sediment, indicating that metals were not retained in litter but recycled back to the sediment. Tannins in mangrove leaf litter might chelate heavy metals, affecting their migration and transformation of heavy metals in estuarine mangrove wetlands. The findings of our study provide insight into the interactions between toxic heavy metals and mangrove plant species during leaf development, representing the first example of how most metals would be retained in leaf litter during decomposition, thereby reducing their release to estuarine and marine ecosystems.


Assuntos
Avicennia , Metais Pesados , Rhizophoraceae , Poluentes Químicos da Água , Áreas Alagadas , Ecossistema , Sedimentos Geológicos , Cádmio , Chumbo , Monitoramento Ambiental , Metais Pesados/análise , Folhas de Planta/química , Plantas , Poluentes Químicos da Água/análise
18.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293359

RESUMO

Salt stress will have a serious inhibitory effect on various metabolic processes of plant cells, this will lead to the excessive accumulation of reactive oxygen species (ROS). Hydrogen peroxide (H2O2) is a type of ROS that can severely damage plant cells in large amounts. Existing methods for assessing the content of H2O2 released from leaves under salt stress will cause irreversible damage to plant leaves and are unable to detect H2O2 production in real time. In this study, on the strength of a series of physiological indicators to verify the occurrence of salt stress, an electrochemical sensor for the detection of H2O2 released from leaves under salt stress was constructed. The sensor was prepared by using multi-walled carbon nanotube-titanium carbide-palladium (MWCNT-Ti3C2Tx-Pd) nanocomposite as substrate material and showed a linear response to H2O2 detection in the range 0.05-18 mM with a detection limit of 3.83 µM. Moreover, we measured the determination of H2O2 released from Arabidopsis leaves at different times of salt stress by the sensor, which was consistent with conventional method. This study demonstrates that electrochemical sensing is a desirable technology for the dynamic determination of H2O2 released by leaves and the assessment of salt stress to plants.


Assuntos
Arabidopsis , Nanotubos de Carbono , Peróxido de Hidrogênio/metabolismo , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/análise , Nanotubos de Carbono/química , Paládio , Folhas de Planta/metabolismo , Estresse Salino , Técnicas Eletroquímicas
19.
Foods ; 11(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35804744

RESUMO

Natural pigments are a quite relevant group of molecules that are widely distributed in nature, possessing a significant role in our daily lives. Besides their colors, natural pigments are currently recognized as having relevant biological properties associated with health benefits, such as anti-tumor, anti-atherogenicity, anti-aging and anti-inflammatory activities, among others. Some of these compounds are easily associated with specific fruits (such as blueberries with anthocyanins, red pitaya with betalain or tomato with lycopene), vegetables (carrots with carotenoids), plant leaves (chlorophylls in green leaves or carotenoids in yellow and red autumn leaves) and even the muscle tissue of vertebrates (such as myoglobin). Despite being less popular as natural pigment sources, edible plant leaves possess a high variety of chlorophylls, as well as a high variety of carotenoids and anthocyanins. The purpose of this review is to critically analyze the whole workflow employed to identify and quantify the most common natural pigments (anthocyanin, carotenoids and chlorophylls) in edible plant leaves using tandem mass spectrometry. Across the literature there, is a lack of consistency in the methods used to extract and analyze these compounds, and this review aims to surpass this issue. Additionally, mass spectrometry has stood out in the context of metabolomics, currently being a widely employed technique in this field. For the three pigments classes, the following steps will be scrutinized: (i) sample pre-preparation, including the solvents and extraction conditions; (ii) details of the chromatographic separation and mass spectrometry experiments (iii) pigment identification and quantification.

20.
Environ Sci Pollut Res Int ; 29(50): 76119-76134, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35666414

RESUMO

The necessity of continuously monitoring the agricultural products in terms of their health has enforced the development of rapid, low-cost, and non-destructive monitoring solutions. Heavy metal contamination of the plants is known as a source of health threats that are made by their proximities with pollutant soil, water, and air. In this paper, a method was proposed to measure lead (Pb) and cadmium (Cd) contamination of plant leaves through field spectrometry as a low-cost solution for continuous monitoring. The study area was Mahneshan county of Zanjan province in Iran with rich heavy metal mines that have more potential for plant contamination. At first, we collected different plant samples throughout the study area and measured the Pb and Cd concentrations using ICP-AES, in which we observed that the concentrations of Pb and Cd are in the range of 1.4 ~ 282.6 and 0.3 ~ 66.7 µgg-1, respectively, and then we tried to find the optimum estimator model through a multi-objective version of genetic algorithm (GA) optimization that finds simultaneously the structure of an artificial neural network and its input features. The features extracted from the raw spectrums have been collimated to be compatible with the Sentinel-2 multispectral bands for the possibility of further developments. The results demonstrate the efficiency of the optimum estimator model in estimation of the leaves' Pb and Cd contamination, irrespective of the plant type, which has reached the R2 of 0.99 and 0.85 for Pb and Cd, respectively. Additionally, the results suggested that the 783-, 842-, and 865-nm spectral bands, which are similar to the 7, 8, and 8a sentinel-2 spectral bands, are more efficient for this purpose.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Monitoramento Ambiental/métodos , Chumbo/análise , Metais Pesados/análise , Redes Neurais de Computação , Folhas de Planta/química , Plantas , Solo/química , Poluentes do Solo/análise , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA