Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 659: 895-904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219308

RESUMO

Transition-metal based oxides with custom-designed phases are effective oxygen evolution reaction (OER) electrocatalysts. However, their applications in water splitting are limited because of insufficient catalytic performance in hydrogen evolution reaction (HER) in alkaline media. In this work, we engineer fabric-like rhodium-nickel-tungsten oxide nanosheets (Rh2O3-NiWO4) on plasma-treated nickel foam (PNF) with a one-step hydrothermal approach for potential applications as industry-grade HER electrocatalysts. Benefiting from rich active sites exposed on the heterostructure, low hydrogen binding energy on Rh, and enhanced charge delivery rates, Rh2O3-NiWO4/PNF catalyst exhibits superior HER activity than that achieved by a commercially available Pt/C catalyst. This is evidenced by the fact that the overpotentials of Rh2O3-NiWO4/PNF for delivering current densities of 10 (j10) and 1000 (j1000) mA cm-2 in 1.0 M KOH are merely 19 and 293 mV, respectively. Meanwhile, the small Tafel slope (18 mV dec-1) of the optimized catalyst manifests the fast HER kinetics. In addition, Rh2O3-NiWO4/PNF exhibits ultra-stable HER performance, and the current density (j100) only decrease 7.69 % after 100 h chronoamperometric curves (I-t) test. The present work provides a new approach for designing high-performance, low-cost 2D electrocatalysts for H2 production and other clean energy-related applications.

2.
Adv Sci (Weinh) ; 11(5): e2304919, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059826

RESUMO

Interfaces of metal oxide heterojunctions display a variety of intriguing physical properties that enable novel applications in spintronics, quantum information, neuromorphic computing, and high-temperature superconductivity. One such LaAlO3 /SrTiO3 (LAO/STO) heterojunction hosts a 2D electron liquid (2DEL) presenting remarkable 2D superconductivity and magnetism. However, these remarkable properties emerge only at very low temperatures, while the heterostructure fabrication is challenging even at the laboratory scale, thus impeding practical applications. Here, a novel plasma-enabled fabrication concept is presented to develop the TiO2 /Ti3 O4 hetero-phase bilayer with a 2DEL that exhibits features of a weakly localized Fermi liquid even at room temperature. The hetero-phase bilayer is fabricated by applying a rapid plasma-induced phase transition that transforms a specific portion of anatase TiO2 thin film into vacancy-prone Ti3 O4 in seconds. The underlying mechanism relies on the screening effect of the achieved high-density electron liquid that suppresses the electron-phonon interactions. The achieved "adiabatic" electron transport in the hetero-phase bilayer offers strong potential for low-loss electric or plasmonic circuits and hot electron harvesting and utilization. These findings open new horizons for fabricating diverse multifunctional metal oxide heterostructures as an innovative platform for emerging clean energy, integrated photonics, spintronics, and quantum information technologies.

3.
ACS Appl Mater Interfaces ; 15(38): 44607-44620, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37722031

RESUMO

Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg2+ during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair.


Assuntos
Grafite , Pontos Quânticos , Alicerces Teciduais , Hidrogéis/farmacologia , Engenharia Tecidual , Magnésio/farmacologia , Grafite/farmacologia , Osteogênese , Ligas/farmacologia , Regeneração Óssea
4.
Polymers (Basel) ; 15(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631388

RESUMO

Unsized single-end rovings are oxygen plasma pretreated and organosilicon plasma coated using plasma nanotechnology to optimize the interphase in glass-fiber-reinforced polyester composites and to determine the achievable range of their shear strength for potential applications. This surface modification of the fibers allows us to vary the shear strength of the composite in the range of 23.1 to 45.2 MPa at reduced financial costs of the process, while the commercial sizing corresponds to 39.2 MPa. The shear strength variability is controlled by the adhesion of the interlayer (plasma nanocoating) due to the variable density of chemical bonds at the interlayer/glass interface. The optimized technological conditions can be used for continuous surface modification of rovings in commercial online fiber-processing systems.

5.
J Colloid Interface Sci ; 629(Pt B): 227-237, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152579

RESUMO

With the surging demand for flexible and portable electronic devices featuring high energy and power density, the development of next-generation lightweight, flexible energy storage devices is crucial. However, achieving the expected energy and power density of supercapacitors remains a great challenge. This work reports a facile plasma-enabled method for preparing supercapacitor electrodes made of MoS2 nanosheets grown on flexible and lightweight N-doped carbon cloth (NCC). The MoS2/NCC presents an outstanding specific capacitance of 3834.28 mF/cm2 at 1 mA/cm2 and energy density of 260.94 µWh/cm2 at a power density of 354.48 µW/cm2. An aqueous symmetric supercapacitor fitted with two MoS2/NCC electrodes achieved the maximum energy density of 138.12 µWh/cm2 and the highest power density of 7,417.33 µW/cm2, along with the excellent cycling stability of 83.3 % retention over 10,000 cycles. The high-performance energy storage ASSSs (all-solid-state supercapacitors) are demonstrated to power devices in both rigid and flexible operation modes. This work provides a new perspective for fabricating high-performance all-solid-state flexible supercapacitors for clean energy storage.

6.
Nanotechnology ; 32(23)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33592600

RESUMO

Hierarchical micro-nanostructured surfaces are key components of 'smart' multifunctional materials, used to control wetting, adhesion, tactile, friction, optical, antifogging, antibacterial, and many more surface properties. Hierarchical surfaces comprise random or ordered structures ranked by their length scale spanning the range from a few nanometers to a few micrometers, with the larger microstructures typically embedding smaller nanostructures. Despite the importance of hierarchical surfaces, there have been few studies on their precise and controlled fabrication or their quantitative characterization, and they usually involve multiple and complex fabrication steps. Here, we present a new plasma nanotechnology, which we term 'nanoinhibit', and a new plasma reactor for producing in one facile process-step-controlled hierarchy at will on polymeric surfaces. We couple the new plasma nanotechnology with detailed computational nanometrology based on the analysis of scanning electron microscopy images and targeted to specific functionality. We showcase the potential of 'nanoinhibit' for functional surface fabrication by controlling the wetting and optical functionality of the fabricated hierarchical surfaces and showing its dependence on surface morphology metrics. Finally, we observe that 'nanoinhibit' produces a new class of 'strong hierarchical' surfaces exhibiting spatially separated periodic and fractal-like components.

7.
Small ; 16(43): e2004843, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33006209

RESUMO

Bimetallic phosphate electrocatalysts on carbon-cloth support are among the most promising industry-relevant solutions for electrocatalytic hydrogen production. To address the persistent issue of hetero-phase interfacing on carbon support while ensuring high activity and stability, a low-cost, high-performance hydrogen evolution reaction (HER) electrocatalyst is developed. Bi-phase Ni12 P5 -Ni4 Nb5 P4 nanocrystals with rich heterointerfaces and phase edges are successfully fabricated on carbon cloth (CC), which is enabled by intentional defect creation by atmospheric pressure dielectric barrier discharge (DBD) plasma (PCC). The obtained Ni12 P5 -Ni4 Nb5 P4 /PCC electrocatalyst exhibits excellent HER performance, heralded by the low overpotentials of 81 and 287 mV for delivering current densities of 10 (j10 ) and 500 (j500 ) mA cm-2 , respectively. Meanwhile, the Ni12 P5 -Ni4 Nb5 P4 /PCC maintains spectacular catalytic activity at high current density region (>j615 ), which outperformed the industry-relevant benchmark Pt/C/PCC catalyst. The catalyst grown on the plasma-treated support shows remarkably longer operation and ultra-stable electrocatalytic characteristics over 100 h continuous operation. Ab initio numerical simulations reveal that Ni atoms exposed in the heterointerfaces act as the main catalytically active centers for HER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA