Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 88(5): 522-528, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38341279

RESUMO

Pulsed electrical stimulation (PES) is known to affect cellular activities. We previously found PES to human dermal fibroblasts (HFs) promoted platelet-derived growth factor subunit A (PDGFA) gene expression, which enhanced proliferation. In this study, we investigated PES effects on fibroblast collagen production and differentiation into myofibroblasts. HFs were electrically stimulated at 4800 Hz and 5 V for 60 min. Imatinib, a specific inhibitor of PDGF receptors, was treated before PES. After 6 h of PES, PDGFA, α-smooth muscle actin (α-SMA), and collagen type I α1 chain gene expressions were upregulated in PES group. Imatinib suppressed the promoted expression except for PDGFA. Immunofluorescence staining and enzyme-linked immunosorbent assay showed the production of α-SMA and collagen I was enhanced in PES group but suppressed in PES + imatinib group at 48 h after PES. Therefore, PES promotes the production of α-SMA and collagen I in fibroblasts, which is triggered by PDGFA that is upregulated early after PES.


Assuntos
Actinas , Colágeno Tipo I , Estimulação Elétrica , Fibroblastos , Fator de Crescimento Derivado de Plaquetas , Humanos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Actinas/metabolismo , Actinas/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Mesilato de Imatinib/farmacologia , Diferenciação Celular/efeitos dos fármacos , Pele/metabolismo , Pele/citologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Derme/citologia , Derme/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Regulação para Cima
2.
Mol Cell Biochem ; 476(1): 361-368, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32968926

RESUMO

Human dermal fibroblast proliferation plays an important role in skin wound healing, and electrical stimulation (ES) promotes skin wound healing. Although the use of ES for skin wound healing has been investigated, the mechanism underlying the effects of ES on cells is still unclear. This study examined the effects of pulsed electrical stimulation (PES) on human dermal fibroblasts. Normal adult human dermal fibroblasts were exposed to a frequency of 4800 Hz, voltage of 1-5 V, and PES exposure time of 15, 30, and 60 min. Dermal fibroblast proliferation and growth factor gene expression were investigated for 6-48 h post PES. Dermal fibroblast proliferation significantly increased from 24 to 48 h post PES at a voltage of 5 V and PES exposure time of 60 min. Under the same conditions, post PES, platelet-derived growth factor subunit A (PDGFA), fibroblast growth factor 2 (FGF2), and transforming growth factor beta 1 (TGF-ß1) expression significantly increased from 6 to 24 h, 12 to 48 h, and 24 to 48 h, respectively. Imatinib, a specific inhibitor of platelet-derived growth factor receptor, significantly inhibited the proliferation of dermal fibroblasts promoted by PES, suggesting that PDGFA expression, an early response of PES, was involved in promoting the cell proliferation. Therefore, PES at 4800 Hz may initially promote PDGFA expression and subsequently stimulate the expression of two other growth factors, resulting in dermal fibroblast proliferation after 24 h or later. In conclusion, PES may activate the cell growth phase of wound healing.


Assuntos
Derme/metabolismo , Estimulação Elétrica , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Adulto , Idoso , Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Mesilato de Imatinib/farmacologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização
3.
Cancer Sci ; 109(5): 1513-1523, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575648

RESUMO

Glioma is the most common form of malignant brain cancer in adults. The Sleeping Beauty (SB) transposon-based glioma mouse model allows for effective in vivo analysis of candidate genes. In the present study, we developed a transposon vector that encodes the triple combination of platelet-derived growth factor subunit A (PDGFA), and shRNAs against Nf1 and Trp53 (shNf1/shp53). Initiation and progression of glioma in the brain were monitored by expression of a fluorescent protein. Transduction of the vector into neural progenitor and stem cells (NPC) in the subventricular zone (SVZ) of the neonatal brain induced proliferation of oligodendrocyte precursor cells, and promoted formation of highly penetrant malignant gliomas within 2-4 months. Cells isolated from the tumors were capable of forming secondary tumors. Two transposon vectors, encoding either PDGFA or shNf1/shp53 were co-electroporated into NPC. Cells expressing PDGFA or shNf1/shp53 were labeled with unique fluorescent proteins allowing visualization of the spatial distribution of cells with different genetic alterations within the same tumor. Tumor cells located at the center of tumors expressed PDGFA at higher levels than those located at the periphery, indicating that intratumoral heterogeneity in PDGFA expression levels spontaneously developed within the same tumor. Tumor cells comprising the palisading necrosis strongly expressed PDGFA, suggesting that PDGFA signaling is involved in hypoxic responses in glioma. The transposon vectors developed are compatible with any genetically engineered mouse model, providing a useful tool for the functional analysis of candidate genes in glioma.


Assuntos
Neoplasias Encefálicas/etiologia , Elementos de DNA Transponíveis/genética , Modelos Animais de Doenças , Glioma/etiologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Hipóxia Celular , Proliferação de Células , Glioma/genética , Glioma/patologia , Camundongos , Camundongos Endogâmicos ICR , Células NIH 3T3 , Neurofibromina 1/genética , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA