Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Arch Physiol Biochem ; : 1-12, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221837

RESUMO

This study aimed to investigate the effects and molecular mechanism of PF on high glucose (HG)-induced podocyte injury. Results found that PF increased proliferation activity, decreased apoptosis, LDH, and caspase-3 levels, and increased nephrin and podocin expression in HG-induced cells. Similarly, PF improved HG-induced mitochondrial damage, decreased Ca2+ and ROS content, alleviated oxidative stress, inhibited mPTP opening, increased mitochondrial membrane potential, and decreased the expressions of Drp1, Bak, Bax, and Cytc in cytoplasm, increased the expressions of SIRT1, PGC-1α, HSP70, HK2, and Cytc in mitochondria of podocytes. The use of mPTP agonist/blocker and SIRT1 inhibitor confirmed that PF alleviates HG-induced podocyte injury by regulating mitochondrial mPTP opening through SIRT1/PGC-1α. In addition, PF affected HK2-VDAC1 protein binding to regulate mPTP opening via the SIRT1/PGC-1α pathway. In conclusion, PF-regulated HK2-VDAC1 protein binding affected mitochondrial mPTP opening and improved HG-induced podocyte injury through the SIRT1/PGC-1α pathway.

2.
World J Diabetes ; 15(9): 1916-1931, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39280180

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is the most frequent chronic microvascular consequence of diabetes, and podocyte injury and malfunction are closely related to the development of DN. Studies have shown that corilagin (Cor) has hepatoprotective, anti-inflammatory, antibacterial, antioxidant, anti-hypertensive, anti-diabetic, and anti-tumor activities. AIM: To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms. METHODS: Streptozotocin and a high-fat diet were combined to generate DN mice models, which were then divided into either a Cor group or a DN group (n = 8 in each group). Mice in the Cor group were intraperitoneally injected with Cor (30 mg/kg/d) for 12 wk, and mice in the DN group were treated with saline. Biochemical analysis was used to measure the blood lipid profiles. Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue. Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin. Mouse podocyte cells (MPC5) were cultured and treated with glucose (5 mmol/L), Cor (50 µM), high glucose (HG) (30 mmol/L), and HG (30 mmol/L) plus Cor (50 µM). Real-time quantitative PCR and Western blotting were performed to examine the effects of Cor on podocyte autophagy. RESULTS: Compared with the control group, the DN mice models had increased fasting blood glucose, glycosylated hemoglobin, triglycerides, and total cholesterol, decreased nephrin and podocin expression, increased apoptosis rate, elevated inflammatory cytokines, and enhanced oxidative stress. All of the conditions mentioned above were alleviated after intervention with Cor. In addition, Cor therapy improved SIRT1 and AMPK expression (P < 0.001), inhibited reactive oxygen species and oxidative stress, and elevated autophagy in HG-induced podocytes (P < 0.01). CONCLUSION: Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway, thereby exerting its protective impact on renal function in DN mice.

3.
Front Pharmacol ; 15: 1386604, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239643

RESUMO

Introduction: Increasing evidence shows that hyperactive aryl hydrocarbon receptor (AHR) signalling is involved in renal disease. However, no currently available intervention strategy is effective in halting disease progression by targeting the AHR signalling. Our previous study showed that barleriside A (BSA), a major component of Plantaginis semen, exhibits renoprotective effects. Methods: In this study, we determined the effects of BSA on AHR expression in 5/6 nephrectomized (NX) rats. We further determined the effect of BSA on AHR, nuclear factor kappa B (NF-ƙB), and the nuclear factor erythroid 2-related factor 2 (Nrf2) signalling cascade in zymosan-activated serum (ZAS)-stimulated MPC5 cells. Results: BSA treatment improved renal function and inhibited intrarenal nuclear AHR protein expression in NX-treated rats. BSA mitigated podocyte lesions and suppressed AHR mRNA and protein expression in ZAS-stimulated MPC5 cells. BSA inhibited inflammation by improving the NF-ƙB and Nrf2 pathways in ZAS-stimulated MPC5 cells. However, BSA did not markedly upregulate the expression of podocyte-specific proteins in the ZAS-mediated MPC5 cells treated with CH223191 or AHR siRNA compared to untreated ZAS-induced MPC5 cells. Similarly, the inhibitory effects of BSA on nuclear NF-ƙB p65, Nrf2, and AHR, as well as cytoplasmic cyclooxygenase-2, heme oxygenase-1, and AHR, were partially abolished in ZAS-induced MPC5 cells treated with CH223191 or AHRsiRNA compared with untreated ZAS-induced MPC5 cells. These results indicated that BSA attenuated the inflammatory response, partly by inhibiting AHR signalling. Discussion: Both pharmacological and siNRA findings suggested that BSA mitigated podocyte lesions by improving the NF-ƙB and Nrf2 pathways via inhibiting AHR signalling. Therefore, BSA is a high-affinity AHR antagonist that abolishes oxidative stress and inflammation.

4.
Front Pharmacol ; 15: 1426917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234117

RESUMO

Background: Podocyte injury is a common pathologic mechanism in diabetic kidney disease (DKD) and obesity-related glomerulopathy (ORG). Our previous study confirmed that Inonotus obliquus (IO) improved podocyte injury on DKD rats. The current study explored the pharmacological effects, related mechanisms and possible active components of IO on ORG mice. Methods: Firstly, by combining ultra-high performance liquid chromatography tandem mass spectrometry analysis (UPLC-Q-TOF-MS) with network pharmacology to construct the human protein-protein interaction mechanism and enrich the pathway, which led to discover the crucial mechanism of IO against ORG. Then, ORG mice were established by high-fat diet and biochemical assays, histopathology, and Western blot were used to explore the effects of IO on obesity and podocyte injury. Finally, network pharmacology-based findings were confirmed by immunohistochemistry. The compositions of IO absorbed in mice plasma were analyzed by UPLC-Q-TOF-MS and molecular docking was used to predict the possible active compounds. Results: The network pharmacology result suggested that IO alleviated the inflammatory response of ORG by modulating TNF signal. The 20-week in vivo experiment confirmed that IO improved glomerular hypertrophy, podocyte injury under electron microscopy, renal nephrin, synaptopodin, TNF-α and IL-6 expressions with Western blotting and immunohistochemical staining. Other indicators of ORG such as body weight, kidney weight, serum total cholesterol, liver triglyceride also improved by IO intervention. The components analysis showed that triterpenoids, including inoterpene F and trametenolic acid, might be the pharmacodynamic basis. Conclusion: The research based on UPLC-Q-TOF-MS analysis, network pharmacology and in vivo experiment suggested that the amelioration of IO on podocyte injury in ORG mice via its modulation on TNF signal. Triterpenoids were predicated as acting components.

5.
Aging (Albany NY) ; null2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39311772

RESUMO

OBJECTIVE: This study aimed to explore the material basis of YBD and its possible mechanisms against NS through network pharmacology, molecular docking, and in vivo experiment. METHODS: Active ingredients and potential targets of YBD were obtained through TCMSP and SwissTargetPrediction. NS-related targets were obtained from GeneCards, PharmGKB, and OMIM databases. The herb-ingredient-target network and PPI network were constructed by Cytoscape 3.9.1 and STRING database. GO and KEGG analyses were performed by DAVID database and ClueGO plugin. The connection between main active ingredients and core targets were revealed by molecular docking. To ascertain the effects and molecular mechanisms of YBD, a rat model was established by PAN. RESULTS: We collected 124 active ingredients, 269 drug targets, and 2089 disease targets. 119 overlapping were screened for subsequent analysis. PPI showed that AKT1, STAT3, TRPC6, CASP3, JUN, PPP3CA, IL6, PTGS2, VEGFA, and NFATC3 were potential therapeutic targets of YBD against NS. Through GO and KEGG analyses, it showed the therapeutic effect of YBD on NS was closely involved in the regulation of pathways related to podocyte injury, including AGE-RAGE signaling pathway in diabetic complications and MAPK signaling pathway. Five key bioactive ingredients of YBD had the good affinity with the core targets. the experiment confirmed the renoprotective effects of YBD through reducing podocyte injury. Furthermore, YBD could downregulate expressions of PPP3CA, STAT3, NFATC3, TRPC6, and AKT1 in rats. CONCLUSIONS: YBD might be a potential drug in the treatment of NS, and the underlying mechanism is closely associated with the inhibition of podocyte injury.

6.
Biol Trace Elem Res ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028478

RESUMO

Chronic kidney disease (CKD) is a highly prevalent condition characterized by renal fibrosis as its ultimate manifestation. Zinc deficiency is closely associated with CKD, evidenced by its link to renal fibrosis. Recently, local lactic acidosis has been demonstrated to promote renal fibrosis. Under zinc-deficient conditions, mitochondrial function is compromised and abnormal lactate metabolism might be induced potentially. However, it remains unclear whether zinc deficiency leads to renal fibrosis through local lactic acidosis. Zinc deficiency rat models were successfully established by feeding zinc-deficient diet. Western blot, qPCR, IHC, and other experiments were employed to investigate the key markers and molecular mechanisms of glomerulosclerosis and renal interstitial fibrosis. Our results indicate that zinc deficiency reduces specific markers of podocytes (podocalyxin, WT1, and nephrin) and activates the Wnt3a/ß-catenin pathway, a key pathway in podocyte injury. Concurrently, glomerulosclerosis is indicated by increased urinary microalbumin and serum creatinine levels along with histological alteration observed through PAS and Masson staining in zinc-deficient rats. Furthermore, various degrees of upregulation for several markers of interstitial fibrosis including α-SMA, FN1 and collagen III are also revealed. These findings were further confirmed by Masson staining and IHC. Additionally, alterations in four markers in the EMT process, N-cadherin, E-cadherin, Vimentin, and snail, were consistent with expectations. We then confirmed the activation of the non-canonical TGF-ß1 pathway known as the PI3K/AKT/mTOR pathway. An elevation in renal ROS levels accompanied by increased mitochondrial marker cytochrome C expression as well as an elevated NADH/NAD + ratio is also observed within the kidneys. Furthermore, the activity of both MMP/TIMP system and fibrinolytic system was abnormally enhanced under zinc deficiency conditions. Finally, we find zinc supplementation could significantly ameliorate relevant pathological alterations induced by zinc deficiency. These results collectively point that zinc deficiency causes podocyte damage ultimately resulting in glomerulosclerosis via accumulation of ROS and induces interstitial fibrosis via lactic acidosis.

7.
Glomerular Dis ; 4(1): 95-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952413

RESUMO

Background: Focal segmental glomerulosclerosis (FSGS) is a histological pattern of glomerular damage that includes idiopathic conditions as well as genetic and non-genetic forms. Among these various etiologies, different phenotypes within the spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) have been associated with FSGS. Summary: Until recently, the main pathomechanism of how congenital kidney and urinary tract defects lead to FSGS was attributed to a reduced number of nephrons, resulting in biomechanical stress on the remaining glomeruli, detachment of podocytes, and subsequent inability to maintain normal glomerular architecture. The discovery of deleterious single-nucleotide variants in PAX2, a transcription factor crucial in normal kidney development and a known cause of papillorenal syndrome, in individuals with adult-onset FSGS without congenital kidney defects has shed new light on developmental defects that become evident during podocyte injury. Key Message: In this mini-review, we challenge the assumption that FSGS in CAKUT is caused by glomerular hyperfiltration alone and hypothesize a multifactorial pathogenesis that includes overlapping cellular mechanisms that are activated in both damaged podocytes as well as nephron progenitor cells.

8.
Nephrology (Carlton) ; 29(9): 555-564, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011853

RESUMO

AIM: Rhodojaponin VI (R-VI) is the key compound of Rhododendron molle G. Don (Ericaceae) (RM) with effective clinical application in rheumatoid arthritis and chronic glomerulonephritis. In our study, we tried to explore the effect of R-VI on the rat model of membranous nephropathy. METHODS: The rat model of passive heymann nephritis (PHN) was established by injecting sheep anti-rat Fx1A serum at a single dose through the tail. The rats were orally administered R-VI (0.02 mg/kg) or FK506 (1 mg/kg) 1 day before PHN induction, which was kept for 4 weeks. Urine and blood samples as well as kidney tissue were collected for analysis. C5b-9-induced human podocyte cell (HPC) was employed for experiments in vitro. RESULTS: R-VI could alleviate glomerulonephritis progression and podocyte injury in PHN rats, as indicated by the decreased proteinuria and the elevated level of albumin, accompanied with reduced immune deposits, reversed podocyte injury in the kidneys. Furthermore, R-VI suppressed murine double minute 2 (MDM2) expression without the alteration in the protein level of p53 and decreased Notch1 expression independent of Numb regulation. Pre-treatment with R-VI in C5b-9-induced HPC blocked MDM2/Notch1 signalling pathway. CONCLUSION: Thus, R-VI ameliorates podocyte injury in rats with PHN, which was probably related with MDM2/Notch1 signalling pathway.


Assuntos
Modelos Animais de Doenças , Glomerulonefrite Membranosa , Podócitos , Proteínas Proto-Oncogênicas c-mdm2 , Receptor Notch1 , Saponinas , Transdução de Sinais , Animais , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/metabolismo , Receptor Notch1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Saponinas/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
9.
Biochem Pharmacol ; 226: 116392, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38942091

RESUMO

Bitter taste receptors (TAS2Rs) Tas2r108 gene possesses a high abundance in mouse kidney; however, the biological functions of Tas2r108 encoded receptor TAS2Rs member 4 (TAS2R4) are still unknown. In the present study, we found that mouse TAS2R4 (mTAS2R4) signaling was inactivated in chronic high glucose-stimulated mouse podocyte cell line MPC, evidenced by the decreased protein expressions of mTAS2R4 and phospholipase C ß2 (PLCß2), a key downstream molecule of mTAS2R4 signaling. Nonetheless, agonism of mTAS2R4 by quinine recovered mTAS2R4 and PLCß2 levels, and increased podocyte cell viability as well as protein expressions of ZO-1 and nephrin, biomarkers of podocyte slit diaphragm, in high glucose-cultured MPC cells. However, blockage of mTAS2R4 signaling with mTAS2R4 blockers γ-aminobutyric acid and abscisic acid, a Gßγ inhibitor Gallein, or a PLCß2 inhibitor U73122 all abolished the effects of quinine on NLRP3 inflammasome and p-NF-κB p65 as well as the functional podocyte proteins in MPC cells in a high glucose condition. Furthermore, knockdown of mTAS2R4 with lentivirus-carrying Tas2r108 shRNA also ablated the effect of quinine on the key molecules of the above inflammatory signalings and podocyte functions in high glucose-cultured MPC cells. In summary, we demonstrated that activation of TAS2R4 signaling alleviated the podocyte injury caused by chronic high glucose, and inhibition of NF-κB p65 and NLRP3 inflammasome mediated the protective effects of TAS2R4 activation on podocytes. Moreover, activation of TAS2R4 signaling could be an important strategy for prevention and treatment of diabetic kidney disease.


Assuntos
Glucose , Podócitos , Receptores Acoplados a Proteínas G , Transdução de Sinais , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Animais , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Glucose/toxicidade , Glucose/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Linhagem Celular
10.
Am J Physiol Cell Physiol ; 327(2): C254-C269, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38798269

RESUMO

The podocyte cytoskeleton determines the stability of podocyte structure and function, and their imbalance plays a pathogenic role in podocyte diseases. However, the underlying mechanism of podocyte cytoskeleton damage is not fully understood. Here, we investigate the specific role of cuproptosis in inducing podocyte cytoskeleton injury. In in vitro and in vivo studies, exposure to high levels of copper and adriamycin (ADR) caused significant increases in copper concentration in intracellular and renal tissue. Moreover, excessive accumulation of copper induced cuproptosis, resulting in the destruction of the podocyte cytoskeleton. However, inhibition of copper accumulation to reduce cuproptosis also significantly alleviated the damage of podocyte cytoskeleton. In addition, inhibition of cuproptosis mitigated ADR-induced mitochondrial damage as well as the production of reactive oxygen species and depolarization of mitochondrial membrane potential, and restored adenosine triphosphate (ATP) synthesis. Among the transcriptome sequencing data, the difference of CXCL5 (C-X-C motif chemokine ligand 5) was the most significant. Both high copper and ADR exposure can cause upregulation of CXCL5, and CXCL5 deletion inhibits the occurrence of cuproptosis, thereby alleviating the podocyte cytoskeleton damage. This suggests that CXCL5 may act upstream of cuproptosis that mediates podocyte cytoskeleton damage. In conclusion, cuproptosis induced by excessive copper accumulation may induce podocyte cytoskeleton damage by promoting mitochondrial dysfunction, thereby causing podocyte injury. This indicates that cuproptosis plays an important role in the pathogenesis of podocyte injury and provides a basis for seeking potential targets for the treatment of chronic kidney disease.NEW & NOTEWORTHY Cuproptosis induced by excessive copper accumulation leads to podocyte cytoskeleton damage by promoting mitochondrial dysfunction, and CXCL5 acts as an upstream signal mediating the occurrence of cuproptosis.


Assuntos
Cobre , Citoesqueleto , Podócitos , Insuficiência Renal Crônica , Podócitos/metabolismo , Podócitos/patologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Animais , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Cobre/metabolismo , Cobre/toxicidade , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Masculino , Doxorrubicina/toxicidade , Camundongos Endogâmicos C57BL , Potencial da Membrana Mitocondrial , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA