Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(9): 4576-4588, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39163735

RESUMO

The use of different template surfaces in crystallization experiments can directly influence the nucleation kinetics, crystal growth, and morphology of active pharmaceutical ingredients (APIs). Consequently, templated nucleation is an attractive approach to enhance crystal nucleation kinetics and preferentially nucleate desired crystal polymorphs for solid-form drug molecules, particularly large and flexible molecules that are difficult to crystallize. Herein, we investigate the effect of polymer templates on the crystal nucleation of clotrimazole and ketoprofen with both experiments and computational methods. Crystallization was carried out in toluene solvent for both APIs with a template library consisting of 12 different polymers. In complement to the experimental studies, we developed a computational workflow based on molecular dynamics (MD) and derived descriptors from the simulations to score and rank API-polymer interactions. The descriptors were used to measure the energy of interaction (EOI), hydrogen bonding, and rugosity (surface roughness) similarity between the APIs and polymer templates. We used a variety of machine learning models (14 in total) along with these descriptors to predict the crystallization outcome of the polymer templates. We found that simply rank-ordering the polymers by their API-polymer interaction energy descriptors yielded 92% accuracy in predicting the experimental outcome for clotrimazole and ketoprofen. The most accurate machine learning model for both APIs was found to be a random forest model. Using these models, we were able to predict the crystallization outcomes for all polymers. Additionally, we have performed a feature importance analysis using the trained models and found that the most predictive features are the energy descriptors. These results demonstrate that API-polymer interaction energies are correlated with heterogeneous crystallization outcomes.


Assuntos
Clotrimazol , Cristalização , Cetoprofeno , Simulação de Dinâmica Molecular , Polímeros , Clotrimazol/química , Cetoprofeno/química , Polímeros/química , Ligação de Hidrogênio , Cinética , Aprendizado de Máquina
2.
Micromachines (Basel) ; 15(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39064364

RESUMO

This study examines the electromechanical characteristics of aluminium-doped zinc oxide (AZO) films. The films were produced using the RF magnetron sputtering process with a consistent thickness of 150 nm on various polymer substrates. The study focuses on assessing the electro-mechanical failure processes of coated segments using flexible substrates, namely polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), with a specific emphasis on typical cracking and delamination occurrences. This examination involves conducting twisting deformation together with using standardised electrical resistance measurements and optical microscope monitoring instruments. It was found that the crack initiation angle is mostly dependent on the mechanical mismatch between the coating and substrate. Higher critical twisting angle values are observed for the AZO/PEN film during twisting testing. Relative to the perpendicular plane of the untwisted sample, it was found that cracks initiated at a twist angle equal to 42° ± 2.1° and 38° ± 1.7° for AZO/PEN and AZO/PET, respectively, and propagated along the sample length. SEM images indicate that the twisting motion results in deformation in the thin film material, leading to the presence of both types of stress in the film structure. These discoveries emphasise the significance of studying the mechanical properties of thin films under different stress conditions, as it can impact their performance and reliability in real-world applications. The electromechanical stability of AZO was found to be similar on both substrates during fatigue testing. Studying the electromechanical properties of various material combinations is important for selecting polymer substrates and predicting the durability of flexible electronic devices made from polyester.

3.
ACS Appl Mater Interfaces ; 16(15): 19496-19506, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568217

RESUMO

Mineral-polymer composites found in nature exhibit exceptional structural properties essential to their function, and transferring these attributes to the synthetic design of functional materials holds promise across various sectors. Biomimetic fabrication of nanocomposites introduces new pathways for advanced material design and explores biomineralization strategies. This study presents a novel approach for producing single platelet nanocomposites composed of CaCO3 and biomimetic peptoid (N-substituted glycines) polymers, akin to the bricks found in the brick-and-mortar structure of nacre, the inner layer of certain mollusc shells. The significant aspect of the proposed strategy is the use of organic peptoid nanosheets as the scaffolds for brick formation, along with their controlled mineralization in solution. Here, we employ the B28 peptoid nanosheet as a scaffold, which readily forms free-floating zwitterionic bilayers in aqueous solution. The peptoid nanosheets were mineralized under consistent initial conditions (σcalcite = 1.2, pH 9.00), with variations in mixing conditions and supersaturation profiles over time aimed at controlling the final product. Nanosheets were mineralized in both feedback control experiments, where supersaturation was continuously replenished by titrant addition and in batch experiments without a feedback loop. Complete coverage of the nanosheet surface by amorphous calcium carbonate was achieved under specific conditions with feedback control mineralization, whereas vaterite was the primary CaCO3 phase observed after batch experiments. Thermodynamic calculations suggest that time-dependent supersaturation profiles as well as the spatial distribution of supersaturation are effective controls for tuning the mineralization extent and product. We anticipate that the control strategies outlined in this work can serve as a foundation for the advanced and scalable fabrication of nanocomposites as building blocks for nacre-mimetic and functional materials.

4.
Int J Biol Macromol ; 260(Pt 1): 129411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232893

RESUMO

Various polymer substrates have their particular combustion features, therefore, developing an effective universal flame retardant strategy for various polymer substrates is of great practical importance. Meanwhile, as substitutes for petroleum-based products, bio-based flame retardants and biodegradable polylactic acid (PLA) meet the requirements of sustainable development. In this work, a fully bio-based flame retardant coating (PAGS) was prepared using phytic acid (PA) and guanosine (GS). PAGS was used as a universal flame retardant coatings for polylactic acid (PLA) fabrics and other substrates, including cotton fabrics, polyethylene terephthalate (PET) fabrics, polyamide (PA) fabrics, polyurethane (PU) foams, polyethylene terephthalate (PET) films, and woods. The PAGS-treated substrates were able to self-extinguish and eliminate molten droplets. Similarly, the PAGS coating significantly suppressed the heat release of each substrate. The P-containing free radicals in the gas phase were able to interact with highly reactive H, HO and alkyl radicals, blocking the chain reaction during combustion. The flammable gas density was also diluted by nonflammable gases. The formed continuous porous and dense intumescent char layer hindered heat and oxygen. It is suggested that this work provides a simple and efficient flame retardant strategy for improving the fire safety of various polymer substrates.


Assuntos
Retardadores de Chama , Poliésteres , Polímeros , Polietilenotereftalatos , Têxteis , Ácido Fítico
5.
Sci Total Environ ; 904: 166595, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659546

RESUMO

Organic-rich thin stillage is a significant by-product of the liquor brewing industry, and its direct release into the environment can cause severe water pollution. Microbial fuel cells (MFCs) offer the possibility for converting organic matters in thin stillage into clean electricity. However, limited biofilm formation and conductivity are crucial bottlenecks in restricting the power harvest of MFCs. Here, to efficiently harvest electricity power from thin stillage of liquor industry, we adopted a modular engineering strategy to increase biofilm formation and conductivity of Shewanella oneidensis via enhancing the component biosynthesis of extracellular polymer substrates (EPS) matrix, regulating intracellular c-di-GMP level, and constructing of artificial hybrid system. The results showed that the constructed CNTs@CF-EnBF2 hybrid system with low charge-transfer resistance enabled a maximum output power density of 576.77 mW/m2 in lactate-fed MFCs. Also, to evaluate the capability of harvesting electricity from actual wastewater, the CNTs@CF-EnBF2 system was employed to treat actual thin stillage, obtaining a maximum output power density of 495.86 mW/m2, 3.3-fold higher than the wild-type strain. Our research suggested that engineering and regulating EPS biosynthesis effectively promoted bioelectricity harvest, providing a green and sustainable treatment strategy for thin stillage.


Assuntos
Fontes de Energia Bioelétrica , Nanotubos de Carbono , Fibra de Carbono , Eletricidade , Eletrodos , Biofilmes
6.
Nano Lett ; 21(9): 3827-3834, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33886314

RESUMO

Sustainability has become a critical concern in the semiconductor industry as hazardous wastes released during the manufacturing process of semiconductor devices have an adverse impact on human beings and the environment. The use of hazardous solvents in existing fabrication processes also restricts the use of polymer substrates because of their low chemical resistance to such solvents. Here, we demonstrate an environmentally friendly mechanical, bilayer lithography that uses just water for development and lift-off. We show that we are able to create arbitrary patterns achieving resolution down to 310 nm. We then demonstrate the use of this technique to create functional devices by fabricating a MoS2 photodetector on a polyethylene terephthalate (PET) substrate with measured response times down to 42 ms.


Assuntos
Impressão , Água , Humanos , Polímeros , Semicondutores
7.
Adv Healthc Mater ; 9(4): e1901347, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943855

RESUMO

Substrates for neuron culture and implantation are required to be both biocompatible and display surface compositions that support cell attachment, growth, differentiation, and neural activity. Laminin, a naturally occurring extracellular matrix protein is the most widely used substrate for neuron culture and fulfills some of these requirements, however, it is expensive, unstable (compared to synthetic materials), and prone to batch-to-batch variation. This study uses a high-throughput polymer screening approach to identify synthetic polymers that supports the in vitro culture of primary mouse cerebellar neurons. This allows the identification of materials that enable primary cell attachment with high viability even under "serum-free" conditions, with materials that support both primary cells and neural progenitor cell attachment with high levels of neuronal biomarker expression, while promoting progenitor cell maturation to neurons.


Assuntos
Células-Tronco Neurais , Neurônios , Animais , Diferenciação Celular , Células Cultivadas , Laminina , Camundongos , Polímeros
8.
Huan Jing Ke Xue ; 39(3): 1316-1324, 2018 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965479

RESUMO

In this study, the effects of magnetic Fe3O4 nanoparticles (Fe3O4 NPs) on soluble microbial products (SMP), loosely bound extracellular polymeric substances (LB-EPS), and tightly bound extracellular polymeric substances (TB-EPS) in anaerobic granular sludge were examined. In addition, the anaerobic granular sludge interior microbial community dynamics were investigated using high-throughput sequencing. The results demonstrated that the removal rate of COD was 83.6% after long-term exposure in the experimental reactor, namely, the anaerobic reactor containing Fe3O4 NPs. It was reduced by 5.7% in comparison with the removal rate in the control reactor. The total amount of TB-EPS in anaerobic granular sludge in the experimental and control reactors was 178.20 mg·g-1 and 138.24 mg·g-1, respectively, while the total amount of SMP in anaerobic granular sludge was 34.88 mg·L-1 and 27.44 mg·L-1, respectively. With regard to the LB-EPS in anaerobic granular sludge in the experimental reactor, the peak of humic acid disappeared and the peak intensity of coenzyme F420 decreased slightly using excitation-emission matrix (EEM) fluorescence spectra. In terms of the microbial community dynamics in the experimental reactor, the abundance of Methanobacterium was greatly augmented from 76.15% to 86.76%; whereas, the abundance of Methanothrix decreased from 17.1% to 7.51%. This indicated that Methanothrix was more sensitive to Fe3O4 NPs. Moreover, the changes in bacterial communities were evident:①the abundance of Proteobacteria dropped from 66.44% to 47.16%; ② the abundance of Actinobacteria grew from 8.97% to 17.33%; and ③ the abundance of Bacteroidetes increased from 8.07% to 17.74%. The increasing abundance of Actinobacteria and Bacteroidetes plays a positive role in the anaerobic hydrolysis of organic matter.


Assuntos
Reatores Biológicos/microbiologia , Compostos Ferrosos/química , Nanopartículas Metálicas , Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Bactérias , Matriz Extracelular de Substâncias Poliméricas/química , Methanosarcinaceae , Polímeros
9.
Appl Spectrosc ; 71(12): 2595-2607, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28828895

RESUMO

While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering.


Assuntos
Técnicas de Cultura de Células/métodos , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Polímeros/química , Polímeros/farmacologia , Razão Sinal-Ruído , Análise de Célula Única/instrumentação , Análise Espectral Raman/instrumentação
10.
ACS Appl Mater Interfaces ; 8(43): 29759-29769, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27734676

RESUMO

A method to obtain photocatalytically active thin films of anatase nanocrystals on polymer substrates was explored. Anatase nanocrystals were synthesized by a fast hydrolysis synthesis in an apolar solvent and characterized with regard to their crystallinity, size, and dispersibility and the stability of the resulting suspensions. The stable titania nanocrystal suspensions were further processed for their use in polar solvents using ligand exchange. Oleic acid was exchanged for 3-aminopropyltriethoxysilane (APTES), resulting in aqueous suspensions of charge-stabilized nanocrystals. These were adapted for use as coating suspensions for surface-treated PMMA substrates in order to obtain thin films containing anatase nanocrystals covalently coupled to the surface of the PMMA substrates. Thereby, the ligand exchange was beneficial for increasing the compatibility and durability of the inorganic/organic composite, by the formation of a covalent amide bond between the silane ligands on the nanocrystals and the carboxylic acid groups on the polymer substrate. The surface morphology, transparency, and photocatalytic activity toward the degradation of organic pollutants of the coatings, obtained through dip-coating, were evaluated.

11.
Bioresour Technol ; 200: 1065-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555241

RESUMO

Both short-term and long-term exposure experiments have been carried out to investigate the influence of iron (Fe)-manganese (Mn)-sepiolite, as a heterogeneous Fenton-like catalyst, on the performance and microbial community of anaerobic granular sludge. During the short-term exposure experiments, chemical oxygen demand (COD) removal efficiency decreased from 73.1% to 64.1% with the presence of 100mg/L of catalyst. However, long-term exposure to the catalyst did not significantly affect the COD removal efficiency (81.8%) as compared to the control (83.5%). Meanwhile, the absorption peaks of coenzyme F420 in extracellular polymeric substances (EPS) of sludge samples were remarkable by excitation-emission matrix (EEM) fluorescence spectra. After long-term exposure, the presence of the catalyst increased secretions of EPS from 83.7mg/g VSS to 89.1mg/g VSS. Further investigations with high throughput sequencing indicated that the abundance of Methanosaeta increased from 57.7% to 70.4% after long-term exposure. In bacterial communities, Proteobacteria, Firmicutes, and Synergistetes were predominant.


Assuntos
Ferro/química , Silicatos de Magnésio/química , Manganês/química , Consórcios Microbianos/fisiologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/instrumentação , Anaerobiose , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Catálise , Peróxido de Hidrogênio/química , Polímeros/química , Espectrometria de Fluorescência , Eliminação de Resíduos Líquidos/métodos
12.
J Colloid Interface Sci ; 444: 67-73, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25585289

RESUMO

Antireflective coatings on polymer substrates have received significant attention for their potential applications. In this paper, robust microporous antifogging antireflective coatings on polymer substrates were prepared from acid-catalyzed silica sol followed by hydrochloric acid vapor solidification at mild temperature below glass transition temperatures of common polymers. The coatings passed 3H pencil hardness test, sand flow test and water-drop test. They had excellent antireflective and antifogging properties. The maximum transmittance of coatings on PMMA substrates reached 100.0% (the maximum transmittance wavelength could be regulated) and average transmittance reached 99.0% in 400-800 nm. The advantage and mechanism of hydrochloric acid vapor solidification and mechanical strength enhancement of coatings are discussed in contrast to ammonia vapor treatment and air vapor treatment. The hydrochloric acid vapor treatment results in a dense integrated microporous film structure. Optical properties were characterized by a UV-Vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. Surface morphologies and structures of coatings were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom force microscopy (AFM).

13.
Thin Solid Films ; 571: 302-307, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25641995

RESUMO

Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA