Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 34(3)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224318

RESUMO

GNE myopathy (GNEM) is a late-onset muscle atrophy, caused by mutations in the gene for the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). With an incidence of one to nine cases per million it is an ultra-rare, so far untreatable, autosomal recessive disease. Several attempts have been made to treat GNEM patients by oral supplementation with sialic acid precursors (e.g. N-acetylmannosamine, ManNAc) to restore sarcolemmal sialylation and muscle strength. In most studies, however, no significant improvement was observed. The lack of a suitable mouse model makes it difficult to understand the exact pathomechanism of GNEM and many years of research have failed to identify the role of GNE in skeletal muscle due to the lack of appropriate tools. We established a CRISPR/Cas9-mediated Gne-knockout cell line using murine C2C12 cells to gain insight into the actual role of the GNE enzyme and sialylation in a muscular context. The main aspect of this study was to evaluate the therapeutic potential of ManNAc and N-acetylneuraminic acid (Neu5Ac). Treatment of Gne-deficient C2C12 cells with Neu5Ac, but not with ManNAc, showed a restoration of the sialylation level back to wild type levels-albeit only with long-term treatment, which could explain the rather low therapeutic potential. We furthermore highlight the importance of sialic acids on myogenesis, for C2C12 Gne-knockout myoblasts lack the ability to differentiate into mature myotubes.


Assuntos
Miopatias Distais , Hexosaminas , Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Desenvolvimento Muscular/genética , Suplementos Nutricionais
2.
Cells ; 12(23)2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067186

RESUMO

Glioblastoma (GBM) is a highly aggressive brain tumor that often utilizes aerobic glycolysis for energy production (Warburg effect), resulting in increased methylglyoxal (MGO) production. MGO, a reactive dicarbonyl compound, causes protein alterations and cellular dysfunction via glycation. In this study, we investigated the effect of glycation on sialylation, a common post-translational modification implicated in cancer. Our experiments using glioma cell lines, human astrocytes (hA), and primary glioma samples revealed different gene expressions of sialyltransferases among cells, highlighting the complexity of the system. Glycation has a differential effect on sialyltransferase expression, upregulating ST8SIA4 in the LN229 and U251 cell lines and decreasing the expression in normal hA. Subsequently, polysialylation increased in the LN229 and U251 cell lines and decreased in hA. This increase in polysialylation could lead to a more aggressive phenotype due to its involvement in cancer hallmark processes such as immune evasion, resistance to apoptosis, and enhancing invasion. Our findings provide insights into the mechanisms underlying GBM aggressiveness and suggest that targeting glycation and sialylation could be a potential therapeutic strategy.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Óxido de Magnésio/uso terapêutico , Reação de Maillard , Linhagem Celular Tumoral , Glioma/metabolismo , Sialiltransferases/genética
3.
Cell Rep ; 42(7): 112692, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37355986

RESUMO

The complex cytoarchitecture of neurons poses significant challenges for the maturation of synaptic membrane proteins. It is currently unclear whether locally secreted synaptic proteins bypass the Golgi or whether they traffic through Golgi satellites (GSs). Here, we create a transgenic GS reporter mouse line and show that GSs are widely distributed along dendrites and are capable of mature glycosylation, in particular sialylation. We find that polysialylation of locally secreted NCAM takes place at GSs. Accordingly, in mice lacking a component of trans-Golgi network-to-plasma membrane trafficking, we find fewer GSs and significantly reduced PSA-NCAM levels in distal dendrites of CA1 neurons that receive input from the temporoammonic pathway. Induction of long-term potentiation at those, but not more proximal, synapses is severely impaired. We conclude that GSs serve the need for local mature glycosylation of synaptic membrane proteins in distal dendrites and thereby contribute to rapid changes in synaptic strength.


Assuntos
Potenciação de Longa Duração , Sinapses , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Sinapses/metabolismo , Neurônios/metabolismo , Dendritos/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo
4.
Mol Neurobiol ; 59(9): 5902-5924, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35831555

RESUMO

Neural cell adhesion molecule, an integrated molecule of immunoglobulin protein superfamily involved in cell-cell adhesion, undergoes various structural modifications through numerous temporal-spatial regulations that generously alter their expressions on cell surfaces. These varied expression patterns are mostly envisioned in the morphogenesis and innervations of different human organs and systems. The considerable role of NCAM in neurite growth, brain development and etc. and its altered expression of NCAM in proliferating tumour cells and metastasis of various human melanomas clearly substantiate its appropriateness as a cell surface marker for diagnosis and potential target for several therapeutic moieties. This characteristic behaviour of NCAM is confined to its novel biochemistry, structural properties, signalling interactions and polysialylation. In particular, the characteristic expressions of NCAM are mainly attributed by its polysialylation, a post-translational modification that attaches polysialyl groups to the NCAM. The altered expression of NCAM on cell surface develops curiosity amidst pharmaceutical scientists, which drives them to understand its role of such expressions in various human melanomas and to elucidate the promising therapeutic strategies that are currently available to target NCAM appositely. Therefore, this review article is articulated with an insight on the altered expressions of NCAM, the clinical significances and the consequences of such atypical expression patterns in various human organs and systems.


Assuntos
Melanoma , Moléculas de Adesão de Célula Nervosa , Adesão Celular , Sistemas de Liberação de Medicamentos , Humanos , Moléculas de Adesão de Célula Nervosa/metabolismo , Processamento de Proteína Pós-Traducional
5.
Cancers (Basel) ; 13(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34680351

RESUMO

Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.

6.
Curr Top Med Chem ; 21(13): 1113-1120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34259146

RESUMO

The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. It has been proposed that NCAM polysialylation could be inhibited by two types of heparin inhibitors, low molecular heparin (LMWH) and heparin tetrasaccharide (DP4). This review summarizes how the interactions between Polysialyltransferase Domain (PSTD) in ST8SiaIV and CMP-Sia, and between the PSTD and polySia take place, and how these interactions are inhibited by LMWH and DP4. Our NMR studies indicate that LMWH is a more effective inhibitor than DP4 for inhibition of NCAM polysialylation. The NMR identification of heparin-binding sites in the PSTD may provide insight into the design of specific inhibitors of polysialylation.


Assuntos
Inibidores Enzimáticos/farmacologia , Heparina/farmacologia , Sialiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Heparina/química , Humanos , Domínios Proteicos/efeitos dos fármacos , Sialiltransferases/metabolismo
7.
Biol Rev Camb Philos Soc ; 96(5): 1907-1932, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33960099

RESUMO

The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be 'known' are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: 'inheritance', 'distribution', 'interactions' and 'phenotypes' (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC ), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Priônicas , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Processamento de Proteína Pós-Traducional
8.
Horm Behav ; 126: 104851, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32941849

RESUMO

N-glycosylation is a posttranslational modification that plays significant roles in regulating protein function. One form of N-glycosylation, polysialylation, has been implicated in many processes including learning and memory, addiction, and neurodegenerative disease. Polysialylation appears to be modulated by the estrous cycle in the hypothalamus in rat, but this has not been assessed in other brain regions. To determine if polysialylation was similarly estrous phase-dependent in other neuroanatomical structures, the percent area of polysialic acid (PSA) immunoreactivity in subregions of the medial prefrontal cortex, hippocampus, and nucleus accumbens was assessed in each of the four phases in adult female mice. In this study, we found that PSA immunoreactivity fluctuated across the estrous cycle in a subregion-specific manner. In the prefrontal cortex, PSA immunoreactivity was significantly lower in proestrus phase compared to estrus in the prelimbic cortex, but did not differ across the estrous cycle in the infralimbic cortex. In the hippocampus, PSA immunoreactivity was significantly increased in proestrus compared to metestrus in the CA1 and CA2 and compared to diestrus in CA3, but remain unchanged in the dentate gyrus. PSA immunoreactivity did not vary across the estrous cycle in the nucleus accumbens core or shell. These findings may have implications for estrous cycle-dependent alterations in behavior.


Assuntos
Encéfalo/metabolismo , Ciclo Estral/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Ácidos Siálicos/metabolismo , Animais , Encéfalo/anatomia & histologia , Ciclo Estral/fisiologia , Feminino , Glicosilação , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Especificidade de Órgãos , Córtex Pré-Frontal/metabolismo
9.
Anal Biochem ; 596: 113625, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088200

RESUMO

Polysialylation is the enzymatic addition of a highly negatively charged sialic acid polymer to the non-reducing termini of glycans. Polysialylation plays an important role in development, and is involved in neurological diseases, neural tissue regeneration, and cancer. Polysialic acid (PSA) is also a biodegradable and non-immunogenic conjugate to therapeutic drugs to improve their pharmacokinetics. PSA chains vary in length, composition, and linkages, while the specific sites of polysialylation are important determinants of protein function. However, PSA is difficult to analyse by mass spectrometry (MS) due to its high negative charge and size. Most analytical approaches for analysis of PSA measure its degree of polymerization and monosaccharide composition, but do not address the key questions of site specificity and occupancy. Here, we developed a high-throughput LC-ESI-MS/MS glycoproteomics method to measure site-specific polysialylation of glycoproteins. This method measures site-specific PSA modification by using mild acid hydrolysis to eliminate PSA and sialic acids while leaving the glycan backbone intact, together with protease digestion followed by LC-ESI-MS/MS glycopeptide detection. PSA-modified glycopeptides are not detectable by LC-ESI-MS/MS, but become detectable after desialylation, allowing measurement of site-specific PSA occupancy. This method is an efficient analytical workflow for the study of glycoprotein polysialylation in biological and therapeutic settings.


Assuntos
Glicoproteínas/análise , Proteômica , Ácidos Siálicos/análise , Glicoproteínas/metabolismo , Humanos , Espectrometria de Massas , Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
10.
Curr Top Med Chem ; 19(31): 2831-2841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31755393

RESUMO

ST8Sia II (STX) is a highly homologous mammalian polysialyltransferase (polyST), which is a validated tumor-target in the treatment of cancer metastasis reliant on tumor cell polysialylation. PolyST catalyzes the synthesis of α2,8-polysialic acid (polySia) glycans by carrying out the activated CMP-Neu5Ac (Sia) to N- and O-linked oligosaccharide chains on acceptor glycoproteins. In this review article, we summarized the recent studies about intrinsic correlation of two polybasic domains, Polysialyltransferase domain (PSTD) and Polybasic region (PBR) within ST8Sia II molecule, and suggested that the critical amino acid residues within the PSTD and PBR motifs of ST8Sia II for polysialylation of Neural cell adhesion molecules (NCAM) are related to ST8Sia II activity. In addition, the conformational changes of the PSTD domain due to point mutations in the PBR or PSTD domain verified an intramolecular interaction between the PBR and the PSTD. These findings have been incorporated into Zhou's NCAM polysialylation/cell migration model, which will provide new perspectives on drug research and development related to the tumor-target ST8Sia II.


Assuntos
Inibidores Enzimáticos/farmacologia , Sialiltransferases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/química , Humanos , Mutação Puntual , Domínios Proteicos , Sialiltransferases/genética , Sialiltransferases/metabolismo
11.
Carbohydr Res ; 479: 48-58, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132642

RESUMO

Cells are covered by a complex array of carbohydrates. Among them, sialosides are of key importance in intracellular adhesion, recognition and signaling. The need for structurally diverse sialosides impelled the search for efficient synthetic methods since their isolation from natural sources is a difficult task. The enzymatic approach obviates the need of a chemical synthesis for protecting or participating groups in the substrates. The trans-sialidase of Trypanosoma cruzi (TcTS) is highly stereospecific for the transfer of sialic acid from an α-sialylglycoside donor to a terminal ß-galactopyranosyl unit in the acceptor substrate to form the α-Neu5Ac-(2 → 3)-ß-D-Galp motif. The enzyme was cloned and easily available glycoproteins, e.g. fetuin, may be used as donors of sialic acid, constituting strong points for the scalability of TcTS-catalyzed reactions. This review outlines the preparative use of TcTS for the sialylation of oligosaccharides. A detailed description of the substrates used as sialic acid donors, the acceptor substrates and the methods employed to monitor the reaction is included.


Assuntos
Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/química , Neuraminidase/metabolismo , Oligossacarídeos/química , Oligossacarídeos/síntese química , Trypanosoma cruzi/enzimologia , Técnicas de Química Sintética
12.
Med Chem ; 15(5): 486-495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30569872

RESUMO

BACKGROUND: The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. Heparin has been found to be effective in inhibiting the ST8Sia IV activity, but no clear molecular rationale. It has been found that polysialyltransferase domain (PSTD) in polyST plays a significant role in influencing polyST activity, and thus it is critical for NCAM polysialylation based on the previous studies. OBJECTIVE: To determine whether the three different types of heparin (unfractionated hepain (UFH), low molecular heparin (LMWH) and heparin tetrasaccharide (DP4)) is bound to the PSTD; and if so, what are the critical residues of the PSTD for these binding complexes? METHODS: Fluorescence quenching analysis, the Circular Dichroism (CD) spectroscopy, and NMR spectroscopy were used to determine and analyze interactions of PSTD-UFH, PSTD-LMWH, and PSTD-DP4. RESULTS: The fluorescence quenching analysis indicates that the PSTD-UFH binding is the strongest and the PSTD-DP4 binding is the weakest among these three types of the binding; the CD spectra showed that mainly the PSTD-heparin interactions caused a reduction in signal intensity but not marked decrease in α-helix content; the NMR data of the PSTD-DP4 and the PSTDLMWH interactions showed that the different types of heparin shared 12 common binding sites at N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, and K276, which were mainly distributed in the long α-helix of the PSTD and the short 3-residue loop of the C-terminal PSTD. In addition, three residues K246, K250 and A254 were bound to the LMWH, but not to DP4. This suggests that the PSTD-LMWH binding is stronger than the PSTD-DP4 binding, and the LMWH is a more effective inhibitor than DP4. CONCLUSION: The findings in the present study demonstrate that PSTD domain is a potential target of heparin and may provide new insights into the molecular rationale of heparin-inhibiting NCAM polysialylation.


Assuntos
Heparina de Baixo Peso Molecular/metabolismo , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Dicroísmo Circular , Humanos , Ligação Proteica , Domínios Proteicos , Espectroscopia de Prótons por Ressonância Magnética , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Espectrometria de Fluorescência
13.
Front Nutr ; 5: 125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619871

RESUMO

High variability exists in individual susceptibility to develop overweight in an obesogenic environment and the biological underpinnings of this heterogeneity are poorly understood. In this brief report, we show in mice that the vulnerability to diet-induced obesity is associated with low level of polysialic acid-neural cell adhesion molecule (PSA-NCAM), a factor of neural plasticity, in the hypothalamus. As we previously shown that reduction of hypothalamic PSA-NCAM is sufficient to alter energy homeostasis and promote fat storage under hypercaloric pressure, inter-individual variability in hypothalamic PSA-NCAM might account for the vulnerability to diet-induced obesity. These data support the concept that reduced plasticity in brain circuits that control appetite, metabolism and body weight confers risk for eating disorders and obesity.

14.
Mol Immunol ; 90: 239-244, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28843905

RESUMO

Neuropilins (NRPs) are single transmembrane receptors with short cytoplasmic tails and are dependent on receptors like VEGF receptors or Plexins for signal transduction. NRPs are known to be important in angiogenesis, lymphangiogenesis, and axon guidance. The Neuropilin-family consists of two members, Neuropilin-1 (NRP1) and Neuropilin-2 (NRP2). They are up to 44 % homologous and conserved in all vertebrates. High levels of NRP2 are found on immune cells. Current research is very limited regarding the functions of NRP2 on these cells. Recent evidence suggests that NRP2 is important for migration, antigen presentation, phagocytosis and cell-cell contact within the immune system. Additionally, posttranslational NRP2 modifications like polysialylation are crucial for the function of some immune cells. This review is an overview about expression and functions of NRP2 in the immune system.


Assuntos
Apresentação de Antígeno/imunologia , Movimento Celular/imunologia , Neuropilina-2/imunologia , Fagocitose/imunologia , Transdução de Sinais/imunologia , Células Dendríticas/citologia , Humanos , Macrófagos/citologia , Neuropilina-2/genética , Processamento Pós-Transcricional do RNA/genética , Linfócitos T/imunologia
15.
Curr Top Med Chem ; 17(21): 2359-2369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413949

RESUMO

As a subset of glycosyltransferases, the family of sialyltransferases catalyze transfer of sialic acid (Sia) residues to terminal non-reducing positions on oligosaccharide chains of glycoproteins and glycolipids, utilizing CMP-Neu5Ac as the activated sugar nucleotide donor. In the four known sialyltransferase families (ST3Gal, ST6Gal, ST6GalNAc and ST8Sia), the ST8Sia family catalyzes synthesis of α2, 8-linked sialic/polysialic acid (polySia) chains according to their acceptor specificity. We have determined the 3D structural models of the ST8Sia family members, designated ST8Sia I (1), II(2), IV(4), V(5), and VI(6) using the Phyre2 server. Accuracy of these predicted models are based on the ST8Sia III crystal structure as the calculated template. The common structural features of these models are: (1) Their parallel templates and disulfide bonds are buried within the enzymes and are predominately surrounded by helices; (2) The anti-parallel ß-sheets are located at the N-terminal region of the enzymes; (3) The mono-sialytransferases (mono-STs), ST8Sia I and ST8Sia VI, contain only a single pair of disulfide bonds, and there are no anti-parallel ß-sheets in ST8Sia VI; (4) The Nterminal region of all of the mono-STs are located some distant away from their core structure; (5) These conformational features show that the 3D structures of the mono-STs are less compact than the two polySTs, ST8Sia II and ST8Sia IV, and the oligo-ST, ST8Sia III. These structural features relate to the catalytic specificity of the monoSTs; (6) In contrast, the more compact structural features of ST8Sia II, ST8Sia IV and ST8Sia III relate to their ability to catalyze the processive synthesis of oligo- (ST8Sia III) and polySia chains (ST8Sia II & ST8Sia IV); (7) Although ST8Sia II, III and IV have similar conformations in their corresponding polysialyltransferase domain (PSTD) and polybasic region (PBR) motifs, the structure of ST8Sia III is less compact than ST8Sia II and ST8Sia IV, and the amino acid components of the several three-residue-loops in the two motifs of ST8Sia III are different from that in ST8Sia II and ST8Sia IV. This is likely the structural basis for why ST8Sia III is an oligoST and not able to polysialylate and; (8) In contrast, essentially all amino acids within the threeresidue- loops in the PSTD of ST8Sia II and ST8Sia IV are highly conserved, and many amino acids in the loops and the helices of these two motifs are critical for NCAM polysialylation, as determined by mutational analysis and confirmed by our recent NMR results. In summary, these new findings provide further insights into the molecular mechanisms underlying polyST-NCAM recognition, polySTpolySia/ oligoSia interactions, and polysialylation of NCAM.


Assuntos
Sialiltransferases/química , Sialiltransferases/metabolismo , Animais , Bactérias/enzimologia , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
16.
Proc Natl Acad Sci U S A ; 113(34): 9498-503, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27444013

RESUMO

Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.

17.
Mater Sci Eng C Mater Biol Appl ; 65: 9-18, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157722

RESUMO

Post-translational modifications such as phosphorylation and sialylation impart crucial functions such as mineral deposition and osteogenic differentiation to non-collagenous bone matrix proteins. In this work, the influence of phosphorylation and polysialylation of gelatin on mineralization in simulated body fluid (SBF) and on osteogenic differentiation of mesenchymal stem cells (MSC) was studied. It was observed that increase in phosphorylation could be directly correlated with the mineralization ability of phosphorylated gelatin in SBF. The total calcium and phosphate deposited increased with increase in degree of phosphorylation and was >3 fold higher on the highest degree of phosphorylation. Whereas, polysialylation did not have any significant influence on mineral deposition in SBF. On the other hand, when MSCs were cultured on polysialylated surfaces they showed relatively higher cell elongation with 1.5 fold higher cell aspect ratio, higher alkaline phosphatase activity and 3 fold higher mineral deposition when compared to control and phosphorylated gelatin surfaces. In conclusion, phosphorylation and polysialylation of gelatin show a significant influence on mineralization and osteogenic differentiation respectively which can be advantageously used for bone tissue engineering.


Assuntos
Gelatina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Gelatina/química , Gelatina/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Varredura , Osteogênese/efeitos dos fármacos , Fosforilação
18.
J Biol Chem ; 291(18): 9444-57, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26884342

RESUMO

Polysialic acid is an oncofetal glycopolymer, added to the glycans of a small group of substrates, that controls cell adhesion and signaling. One of these substrates, neuropilin-2, is a VEGF and semaphorin co-receptor that is polysialylated on its O-glycans in mature dendritic cells and macrophages by the polysialyltransferase ST8SiaIV. To understand the biochemical basis of neuropilin-2 polysialylation, we created a series of domain swap chimeras with sequences from neuropilin-1, a protein for which polysialylation had not been previously reported. To our surprise, we found that membrane-associated neuropilin-1 is polysialylated at ∼50% of the level of neuropilin-2 but not polysialylated when it lacks its cytoplasmic tail and transmembrane region and is secreted from the cell. This was not the case for neuropilin-2, which is polysialylated when either membrane-associated or soluble. Evaluation of the soluble chimeric proteins demonstrated that the meprin A5 antigen-µ tyrosine phosphatase (MAM) domain and the O-glycan-containing linker region of neuropilin-2 are necessary and sufficient for its polysialylation and serve as better recognition and acceptor sites in the polysialylation process than those regions of neuropilin-1. In addition, specific acidic residues on the surface of the MAM domain are critical for neuropilin-2 polysialylation. Based on these data and pull-down experiments, we propose a model where ST8SiaIV recognizes and docks on an acidic surface of the neuropilin-2 MAM domain to polysialylate O-glycans on the adjacent linker region. These results together with those related to neural cell adhesion molecule polysialylation establish a paradigm for the process of protein-specific polysialylation.


Assuntos
Ácido N-Acetilneuramínico/metabolismo , Neuropilina-2/metabolismo , Sialiltransferases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Glicosilação , Humanos , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Ácido N-Acetilneuramínico/genética , Neuropilina-2/genética , Sialiltransferases/genética
19.
Brain Struct Funct ; 221(3): 1591-605, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25596866

RESUMO

The neural cell adhesion molecule NCAM and its association with the polysialic acid (PSA) are believed to contribute to brain structural plasticity that underlies memory formation. Indeed, the attachment of long chains of PSA to the glycoprotein NCAM down-regulates its adhesive properties by altering cell-cell interactions. In the brain, the biosynthesis of PSA is catalyzed by two polysialyltransferases, which are differentially regulated during lifespan. One of them, ST8SiaIV (PST), is predominantly expressed during adulthood whereas the other one, ST8SiaII (STX), dominates during embryonic and post-natal development. To understand the role played by ST8SiaIV during learning and memory and its underlying hippocampal plasticity, we used knockout mice deleted for the enzyme ST8SiaIV (PST-ko mice). At adult age, PST-ko mice show a drastic reduction of PSA-NCAM expression in the hippocampus and intact hippocampal adult neurogenesis. We found that these mice display impaired long-term but not short-term memory in both, spatial and non-spatial behavioral tasks. Remarkably, memory deficits of PST-ko mice were abolished by exposure to environmental enrichment that was also associated with an increased number of PSA-NCAM expressing new neurons in the dentate gyrus of these mice. Whether the presence of a larger pool of immature, likely plastic, new neurons favored the rescue of long-term memory in PST-ko mice remains to be determined. Our findings add new evidence to the role played by PSA in memory consolidation. They also suggest that PSA synthesized by PST critically controls the tempo of new neurons maturation in the adult hippocampus.


Assuntos
Ambiente Controlado , Hipocampo/enzimologia , Memória/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Sialiltransferases/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurogênese , Plasticidade Neuronal , Sialiltransferases/genética , Memória Espacial/fisiologia
20.
Acta Naturae ; 7(4): 136-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798501

RESUMO

Organophosphate toxins (OPs) are the most toxic low-molecular compounds. The extremely potent toxicity of OPs is determined by their specificity toward the nerve system. Human butyrylcholinesterase (hBChE) is a natural bioscavenger against a broad spectrum of OPs, which makes it a promising candidate for the development of DNA-encoded bioscavengers. The high values of the protective index observed for recombinant hBChE (rhBChE) make it appropriate for therapy against OP poisoning, especially in the case of highly toxic warfare nerve agents. Nevertheless, large-scale application of biopharmaceuticals based on hBChE is restricted due to its high cost and extremely rapid elimination from the bloodstream. In the present study, we examine two approaches for long-acting rhBChE production: I) chemical polysialylation and II) in-vivo tetramerization. We demonstrate that both approaches significantly improve the pharmacokinetic characteristics of rhBChE (more than 5 and 10 times, respectively), which makes it possible to use rhBChE conjugated with polysialic acids (rhBChE-CAO) and tetrameric rhBChE (4rhBChE) in the treatment of OP poisonings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA