Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39057853

RESUMO

Environmental pollution of phosphorus is becoming increasingly concerning, and phosphate removal from water has become an important issue for controlling eutrophication. Modified metal-organic framework (MOF) materials, such as UiO-66-NH2, are promising adsorbents for phosphate removal in aquatic environments due to their high specific surface area, high porosity, and open active metal sites. In this study, a millimeter-sized alginate/UiO-66-NH2 composite hydrogel modified by polyethyleneimine (UiO-66-NH2/SA@PEI) was prepared. The entrapping of UiO-66-NH2 in the alginate microspheres and its modification with PEI facilitate easy separation in addition to enhanced adsorption properties. The materials were characterized by SEM, FTIR, XRD, and BET. Static, dynamic, and cyclic adsorption experiments were conducted under different pH, temperature, adsorbent dosage, and initial concentration conditions to assess the phosphate adsorption ability of UiO-66-NH2/SA@PEI. Under optimal conditions of 65 °C and pH = 2, 0.05 g UiO-66-NH2/SA@PEI adsorbed 68.75 mg/g, and the adsorption rate remained at 99% after five cycles of UiO-66-NH2/SA@PEI. These results suggest that UiO-66-NH2/SA@PEI composite materials can be used as an effective adsorbent for phosphate removal from wastewater.

2.
ACS Appl Mater Interfaces ; 16(24): 31610-31623, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38853366

RESUMO

Affinity-based electrochemical (AEC) biosensors have gained more attention in the field of point-of-care management. However, AEC sensing is hampered by biofouling of the electrode surface and degradation of the antifouling material. Therefore, a breakthrough in antifouling nanomaterials is crucial for the fabrication of reliable AEC biosensors. Herein, for the first time, we propose 1-pyrenebutyric acid-functionalized MXene to develop an antifouling nanocomposite to resist biofouling in the immunosensors. The nanocomposite consisted of a 3D porous network of bovine serum albumin cross-linked with glutaraldehyde with functionalized MXene as conductive nanofillers, where the inherited oxidation resistance property of functionalized MXene improved the electrochemical lifetime of the nanocomposite. On the other hand, the size-extruded porous structure of the nanocomposite inhibited the biofouling activity on the electrode surface for up to 90 days in real samples. As a proof of concept, the antifouling nanocomposite was utilized to fabricate a multiplexed immunosensor for the detection of C-reactive protein (CRP) and ferritin biomarkers. The fabricated sensor showed good selectivity over time and an excellent limit of detection for CRP and ferritin of 6.2 and 4.2 pg/mL, respectively. This research successfully demonstrated that functionalized MXene-based antifouling nanocomposites have great potential to develop high-performance and low-cost immunosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanocompostos , Soroalbumina Bovina , Nanocompostos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Porosidade , Soroalbumina Bovina/química , Incrustação Biológica/prevenção & controle , Proteína C-Reativa/análise , Imunoensaio/métodos , Humanos , Pirenos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Animais , Limite de Detecção , Eletrodos , Bovinos
3.
Environ Sci Pollut Res Int ; 30(52): 112503-112516, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831267

RESUMO

The study describes synthesizing and characterizing a novel dithiocarbamate-functionalized magnetic nanocomposite. This nanocomposite exhibits several desirable properties, including a large pore diameter of 2.55 nm, a high surface area of 1149 m2/g, and excellent capturing capabilities. The synthesis process involves the preparation of highly porous magnetic nanocomposites, followed by functionalization with dithiocarbamate functional groups through a reaction with carbon disulfide and amine. The synthesized nanocomposite was thoroughly characterized using various techniques, including X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The performance of the mesoporous nanocomposite as an adsorbent for removing Pb(II), Cd(II), and Cu(II) cations from contaminated water was evaluated. The study finds that the maximum removal efficiency for Pb(II), Cd(II), and Cu(II) cations is achieved at pH values above 4. The optimal contact time for achieving 100% removal efficiency of the mentioned cations ranged between 60 and 120 min. Within this time range, the adsorbent exhibited efficient capture of the heavy metal cations from contaminated water. Additionally, the appropriate amount of adsorbent required for complete elimination of the heavy metal cations is determined. For Cd(II), the optimal dosage was found to be 50 mg of the adsorbent. For Cu(II), the optimal dosage was determined to be 40 mg. Finally, for Pb(II), the optimal dosage was 30 mg. The adsorbent's regeneration capability was demonstrated, showing that it could be reused for five consecutive runs.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio , Dióxido de Silício/química , Chumbo , Adsorção , Cátions , Fenômenos Magnéticos , Água , Cinética
4.
Anal Chim Acta ; 1251: 341018, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925304

RESUMO

Influenza viruses are known to cause pandemic flu through inter-human and animal-to-human transmissions. Neuraminidase (NA), which is a surface glycoprotein of both influenza A and B viruses, is a minor immunogenic determinant; however, it has been proposed as an ideal candidate for a real testing. We successfully identified an affinity peptide which is specific to the influenza H5N1 virus NA via phage display technique and observed initially its binding affinities using enzyme-linked immunosorbent assay (ELISA). In addition, four synthetic peptides were chemically synthesized to develop an affinity peptide-based electrochemical biosensing system. Among all peptides tested, INA BP2 was selected as a potential candidate and subjected to square-wave voltammetry (SWV) for evaluating their detection performance. To enhance analytical performance, a three-dimensional porous bovine serum albumin (BSA)-MXene (BSA/MXene) matrix was applied. The surface morphology of the BSA/MXene film-deposited electrode was analyzed using X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Using SWV measurement, the BSA/MXene nanocomposite-based peptide sensor exhibited significant the dissociation constant (Kd = 9.34 ± 1.20 nM) and the limit of detection (LOD, 0.098 nM), resulting in good reproducibility, stability and recovery, even in the presence with spiked human plasma. These results demonstrate an alternative way of new bioanalytical sensing platform for developing more desirable sensitivity in other virus detection.


Assuntos
Técnicas Biossensoriais , Virus da Influenza A Subtipo H5N1 , Influenza Humana , Nanocompostos , Animais , Humanos , Soroalbumina Bovina/química , Influenza Humana/diagnóstico , Porosidade , Reprodutibilidade dos Testes , Peptídeos , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
5.
ACS Appl Mater Interfaces ; 12(38): 42880-42890, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32847347

RESUMO

A wearable and effective tribopositive material, especially an economical and eco-friendly triboelectric fabric developed from biomaterials, is highly crucial for the development of green wearable triboelectric nanogenerators. In this work, we design a porous nanocomposite fabric (PNF) with strong charge accumulation capacity through a facile dry-casting method and use it as a tribopositive material to construct attractive wearable triboelectric nanogenerators (abbreviated as TENGs). Specifically, the porous nanocomposite is developed by the incorporation of nano-Al2O3 fillers into cellulose acetate networks. By adjusting the concentration of casting solution and the content of nano-Al2O3 fillers, we systematically engineer the physical properties of the PNF for obtaining a large triboelectric charge yield. When a 10 wt % solution concentration and 10 wt % nanofiller content are adopted for the PNF, the corresponding PNF-TENG can deliver an electrical performance of ∼2.5 mW/cm2 on a 0.8 MΩ external resistor. This remarkable output can be ascribed to the synergistic effect between the appropriate porous network and improved dielectric properties of the nanocomposite. Moreover, the PNF-TENG also exhibits good reliable electrical outputs under multiple stain-washing measurements or after experiencing cyclical contact-separation 13,500 times. Also, the device is capable of charging various capacitors, lighting LED arrays, and driving commercial wrist watches and is proven to be an efficient and reliable green wearable power source. Furthermore, a PNF-TENG-based elbow supporter and a grip ball, as self-powered sensors, are proposed to realize real-time detection for human actions during sports exercise. This work proposes an eco-friendly nanocomposite fabric as an effective tribopositive material, verifies the feasibility of developing environmentally friendly wearable power sources and sensors, and provides new insights into the design of green wearable triboelectric nanogenerators.


Assuntos
Monitorização Fisiológica , Nanocompostos/química , Nanotecnologia , Dispositivos Eletrônicos Vestíveis , Humanos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
6.
Math Biosci Eng ; 16(5): 4873-4884, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31499694

RESUMO

The measurement of biological fluid uptake into a scaffold sensor has been modeled by measuring the response of induced high-frequency temperature pulses. For this, a heat transport equation is used, developed from Extended Thermodynamics, also equivalent to Cattaneo's equation, as well as an effective thermal conductivity. The effective thermal conductivity is experimentally validated against data measurements of a carbon nanotube porous nanocomposite, embedded with silica nanoparticles. This nanocomposite serves also as the case study for the scaffold sensor. The uptake of the biological fluid in this scaffold sensor is equivalent to a change in the effective thermal conductivity, monitored by an increase of the interstitial volume fraction. By imposing a high-frequency temperature oscillation, the temperature response at the other end of the porous medium is calculated. Depending on the ratio of the relaxation time and the thermal diffusion time, the temperature response can be of oscillatory nature or of an exponential growth to an asymptotic limit. It is observed that an observed phase lag in the temperature response indicates a change in the effective thermal conductivity and thus is a criterion denoting the amount of uptake.


Assuntos
Líquidos Corporais/metabolismo , Nanocompostos , Transporte Biológico , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/estatística & dados numéricos , Temperatura Alta , Humanos , Conceitos Matemáticos , Modelos Biológicos , Nanocompostos/química , Nanocompostos/estatística & dados numéricos , Nanotubos de Carbono/química , Nanotubos de Carbono/estatística & dados numéricos , Porosidade , Dióxido de Silício/química , Condutividade Térmica , Termodinâmica
7.
Molecules ; 24(17)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480573

RESUMO

A novel tweakable nanocomposite was prepared by spark plasma sintering followed by systematic oxidation of carbon nanotube (CNT) molecules to produce alumina/carbon nanotube nanocomposites with surface porosities. The mechanical properties (flexural strength and fracture toughness), surface area, and electrical conductivities were characterized and compared. The nanocomposites were extensively analyzed by field emission scanning electron microscopy (FE-SEM) for 2D qualitative surface morphological analysis. Adding CNTs in ceramic matrices and then systematically oxidizing them, without substantial reduction in densification, induces significant capability to achieve desirable/application oriented balance between mechanical, electrical, and catalytic properties of these ceramic nanocomposites. This novel strategy, upon further development, opens new level of opportunities for real-world/industrial applications of these relatively novel engineering materials.


Assuntos
Cerâmica/química , Nanocompostos/química , Nanotubos de Carbono/química , Óxido de Alumínio/química , Condutividade Elétrica , Nanocompostos/ultraestrutura , Nanotubos de Carbono/ultraestrutura
8.
Mater Sci Eng C Mater Biol Appl ; 105: 110138, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546409

RESUMO

In the present study, porous (about 70 vol%) nanocomposite scaffolds made of polycaprolactone (PCL) and different amounts (0 to 15 wt%) of 45S bioactive glass (BG) nanoparticles (with a particle size of about 40 nm) containing 7 wt% strontium (Sr) were fabricated by solvent casting technique for bone tissue engineering. Then, a selected optimum scaffold was coated with a thin layer of chitosan containing 15 wt% Sr-substituted BG nanoparticles. Several techniques such as X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), tensile test, and water contact angle measurement were used to characterize the fabricated samples. In vitro experiments including degradation, bioactivity, and biocompatibility (i.e., cytotoxicity, alkaline phosphate activity, and cell adhesion) tests of the fabricated scaffold were performed. The biomedical behavior of the fabricated PCL-based composite scaffold was interpreted by considering the presence of the porosity, Sr-substituted BG nanoparticles, and the chitosan coating. In conclusion, the fabricated chitosan-coated porous PCL/BG nanocomposite containing 15 wt% BG nanoparticles could be utilized as a good candidate for bone tissue engineering.


Assuntos
Fosfatase Alcalina/metabolismo , Osso e Ossos/fisiologia , Quitosana/química , Vidro/química , Nanocompostos/química , Poliésteres/química , Estrôncio/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adesão Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Difusão Dinâmica da Luz , Humanos , Nitrogênio/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Molhabilidade , Difração de Raios X
9.
ACS Appl Mater Interfaces ; 10(22): 18726-18733, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29762008

RESUMO

A N,O-codoped hierarchical porous nanocomposite consisting of binary reduced graphene oxide and pyrolytic carbon (rGO/PC) from chitosan is fabricated. The optimized rGO/PC possesses micropores with size distribution concentrated around 1.1 nm and plenty of meso/macropores. The Brunauer-Emmett-Teller specific surface area is 480.8 m2 g-1, and it possesses impressively large pore volume of 2.14 cm3 g-1. On the basis of the synergistic effects of the following main factors: (i) the confined space effect in the hierarchical porous binary carbonaceous matrix; (ii) the anchor effects by strong chemical bonds with codoped N and O atoms; and (iii) the good flexibility and conductivity of rGO, the rGO/PC/S holding 75 wt % S exhibits high performance as Li-S battery cathode. Specific capacity of 1625 mA h g-1 can be delivered at 0.1 C (1 C = 1675 mA g-1), whereas 848 mA h g-1 can be maintained after 300 cycles at 1 C. Even at high rate of 5 C, 412 mA h g-1 can be restrained after 1000 cycles.

10.
Biochem Biophys Rep ; 10: 237-251, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955752

RESUMO

The demands for applicable tissue-engineered scaffolds that can be used to repair load-bearing segmental bone defects (SBDs) is vital and in increasing demand. In this study, seven different combinations of 3 dimensional (3D) novel nanocomposite porous structured scaffolds were fabricated to rebuild SBDs using an extraordinary blend of cockle shells (CaCo3) nanoparticles (CCN), gelatin, dextran and dextrin to structure an ideal bone scaffold with adequate degradation rate using the Freeze Drying Method (FDM) and labeled as 5211, 5400, 6211, 6300, 7101, 7200 and 8100. The micron sized cockle shells powder obtained (75 µm) was made into nanoparticles using mechano-chemical, top-down method of nanoparticles synthesis with the presence of the surfactant BS-12 (dodecyl dimethyl bataine). The phase purity and crystallographic structures, the chemical functionality and the thermal characterization of the scaffolds' powder were recognized using X-Ray Diffractometer (XRD), Fourier transform infrared (FTIR) spectrophotometer and Differential Scanning Calorimetry (DSC) respectively. Characterizations of the scaffolds were assessed by Scanning Electron Microscopy (SEM), Degradation Manner, Water Absorption Test, Swelling Test, Mechanical Test and Porosity Test. Top-down method produced cockle shell nanoparticles having averagely range 37.8±3-55.2±9 nm in size, which were determined using Transmission Electron Microscope (TEM). A mainly aragonite form of calcium carbonate was identified in both XRD and FTIR for all scaffolds, while the melting (Tm) and transition (Tg) temperatures were identified using DSC with the range of Tm 62.4-75.5 °C and of Tg 230.6-232.5 °C. The newly prepared scaffolds were with the following characteristics: (i) good biocompatibility and biodegradability, (ii) appropriate surface chemistry and (iii) highly porous, with interconnected pore network. Engineering analyses showed that scaffold 5211 possessed 3D interconnected homogenous porous structure with a porosity of about 49%, pore sizes ranging from 8.97 to 337 µm, mechanical strength 20.3 MPa, Young's Modulus 271±63 MPa and enzymatic degradation rate 22.7 within 14 days.

11.
Sci Technol Adv Mater ; 17(1): 177-187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877868

RESUMO

A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV-visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties.

12.
Carbohydr Polym ; 153: 124-132, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27561479

RESUMO

A novel porous graphene oxide (GO)/chitosan (CTS)-hydroxyapatite (HA) nanocomposite film was successfully prepared for the first time by combining layer-by-layer (LBL) assembly technology with biomimetic mineralization method. The LBL technology was used to control the thickness of film as well as induce the biomimetic mineralization of biocompatible HA. The obtained (GO/CTS-HA)n film provided ideal platform for the proliferation of mouse mesenchymal stem cells (mMSCs). The pore size in the film is about 300nm, and the porous architecture made the film have high aspirin loading efficiency. Also the accumulated loading dosage could be adjusted by the film thickness, and the sustained release of aspirin could ensure well anti-inflammatory effect. The above advantages may alleviate the pain of patients and give the better environment for bone regeneration. This multifunctional aspirin-loaded (GO/CTS-HA)n film provided an inspiration for the synthesis of novel porous inorganic/biomacromolecule nanocomposite films as the biocoatings applied in bone tissue engineering.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Aspirina/administração & dosagem , Quitosana/química , Durapatita/química , Grafite/química , Células-Tronco Mesenquimais/citologia , Nanocompostos/química , Animais , Antipiréticos/administração & dosagem , Linhagem Celular , Proliferação de Células , Preparações de Ação Retardada/química , Camundongos , Nanocompostos/ultraestrutura , Óxidos/química , Porosidade , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA