Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
mBio ; 15(4): e0031924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38441981

RESUMO

Trypanosoma cruzi is the etiologic agent of the most prevalent human parasitic disease in Latin America, Chagas disease. Its genome is rich in multigenic families that code for virulent antigens and are present in the rapidly evolving genomic compartment named Disruptive. DNA replication is a meticulous biological process in which flaws can generate mutations and changes in chromosomal and gene copy numbers. Here, integrating high-throughput and single-molecule analyses, we were able to identify Predominant, Flexible, and Dormant Orc1Cdc6-dependent origins as well as Orc1Cdc6-independent origins. Orc1Cdc6-dependent origins were found in multigenic family loci, while independent origins were found in the Core compartment that contains conserved and hypothetical protein-coding genes, in addition to multigenic families. In addition, we found that Orc1Cdc6 density is related to the firing of origins and that Orc1Cdc6-binding sites within fired origins are depleted of a specific class of nucleosomes that we previously categorized as dynamic. Together, these data suggest that Orc1Cdc6-dependent origins may contribute to the rapid evolution of the Disruptive compartment and, therefore, to the success of T. cruzi infection and that the local epigenome landscape is also involved in this process.IMPORTANCETrypanosoma cruzi, responsible for Chagas disease, affects millions globally, particularly in Latin America. Lack of vaccine or treatment underscores the need for research. Parasite's genome, with virulent antigen-coding multigenic families, resides in the rapidly evolving Disruptive compartment. Study sheds light on the parasite's dynamic DNA replication, discussing the evolution of the Disruptive compartment. Therefore, the findings represent a significant stride in comprehending T. cruzi's biology and the molecular bases that contribute to the success of infection caused by this parasite.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Origem de Replicação , Doença de Chagas/parasitologia , Dosagem de Genes , Cromossomos
2.
mBio, v. 15, n. 4, e00319-24, fev. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5277

RESUMO

Trypanosoma cruzi is the etiologic agent of the most prevalent human parasitic disease in Latin America, Chagas disease. Its genome is rich in multigenic families that code for virulent antigens and are present in the rapidly evolving genomic compartment named Disruptive. DNA replication is a meticulous biological process in which flaws can generate mutations and changes in chromosomal and gene copy numbers. Here, integrating high-throughput and single-molecule analyses, we were able to identify Predominant, Flexible, and Dormant Orc1Cdc6-dependent origins as well as Orc1Cdc6-independent origins. Orc1Cdc6-dependent origins were found in multigenic family loci, while independent origins were found in the Core compartment that contains conserved and hypothetical protein-coding genes, in addition to multigenic families. In addition, we found that Orc1Cdc6 density is related to the firing of origins and that Orc1Cdc6-binding sites within fired origins are depleted of a specific class of nucleosomes that we previously categorized as dynamic. Together, these data suggest that Orc1Cdc6-dependent origins may contribute to the rapid evolution of the Disruptive compartment and, therefore, to the success of T. cruzi infection and that the local epigenome landscape is also involved in this process.

3.
Pediatr Blood Cancer ; 64(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28598542

RESUMO

BACKGROUND: Overexpression of minichromosome maintenance (MCM) proteins 2, 3, and 7 is associated with migration and invasion in medulloblastoma (MB). However, expression profiling of all prereplication complex (pre-RC) has not been addressed in MBs. PROCEDURE: We performed mRNA expression profiling of a large set of pre-RC elements in cell lines and tumor tissues of MB. RNAi technology was employed for functional studies in MB cell lines. RESULTS: Our data showed that most of the pre-RC components are significantly overexpressed in MB. Among all pre-RC mRNAs, MCM10 showed the highest level of expression (∼500- to 1,000-fold) in MB cell lines and tissues compared to the levels detected in cerebellum. In addition, RNAi silencing of MCM10 caused reduced cell proliferation and cell viability in MB cells. CONCLUSIONS: Taken together, our study reveals that the pre-RC is dysregulated in MB. In addition, MCM10, a member of this complex, is significantly overexpressed in MB and is required for tumor cell proliferation.


Assuntos
Neoplasias Cerebelares/química , Meduloblastoma/química , Proteínas de Manutenção de Minicromossomo/fisiologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/patologia , Humanos , Imuno-Histoquímica , Meduloblastoma/patologia , Proteínas de Manutenção de Minicromossomo/análise
4.
Genes Dev ; 28(20): 2291-303, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319829

RESUMO

Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2-7 (minichromosome maintenance proteins 2-7) double hexamer. During S phase, each Mcm2-7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC-Cdc6 function to recruit a single Cdt1-Mcm2-7 heptamer to replication origins prior to Cdt1 release and ORC-Cdc6-Mcm2-7 complex formation, but how the second Mcm2-7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC-Cdc6-Mcm2-7 complex and an ORC-Cdc6-Mcm2-7-Mcm2-7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2-7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2-7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.


Assuntos
Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ativação Enzimática , Hidrólise , Microscopia Eletrônica , Proteínas de Manutenção de Minicromossomo/isolamento & purificação , Conformação Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA