Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(22): 4591-4604.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34592134

RESUMO

Protein ADP-ribosylation is a reversible post-translational modification that transfers ADP-ribose from NAD+ onto acceptor proteins. Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs), which remove the modification, regulates diverse cellular processes. However, the chemistry and physiological functions of mono(ADP-ribosyl)ation (MARylation) remain elusive. Here, we report that Arabidopsis zinc finger proteins SZF1 and SZF2, key regulators of immune gene expression, are MARylated by the noncanonical ADP-ribosyltransferase SRO2. Immune elicitation promotes MARylation of SZF1/SZF2 via dissociation from PARG1, which has an unconventional activity in hydrolyzing both poly(ADP-ribose) and mono(ADP-ribose) from acceptor proteins. MARylation antagonizes polyubiquitination of SZF1 mediated by the SH3 domain-containing proteins SH3P1/SH3P2, thereby stabilizing SZF1 proteins. Our study uncovers a noncanonical ADP-ribosyltransferase mediating MARylation of immune regulators and underpins the molecular mechanism of maintaining protein homeostasis by the counter-regulation of ADP-ribosylation and polyubiquitination to ensure proper immune responses.


Assuntos
ADP-Ribosilação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Imunidade Vegetal , Ubiquitinação , Dedos de Zinco , ADP Ribose Transferases/metabolismo , Difosfato de Adenosina/química , Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Genes de Plantas , Glicosídeo Hidrolases/metabolismo , Homeostase , Humanos , Hidrólise , Mutação , Plantas Geneticamente Modificadas , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteostase , Plântula/metabolismo , Especificidade por Substrato , Tristetraprolina/química , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/química
2.
Biochimie ; 168: 144-155, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31668992

RESUMO

Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential multifunctional protein in mammals involved in base excision DNA repair (BER), regulation of gene expression and RNA metabolism. Its major enzymatic function is incision of AP sites. Poly(ADP-ribose) polymerase 1 (PARP1) modifies itself and target proteins with poly(ADP-ribose) (PAR), contributing to regulation of many processes. To understand molecular basis of functional cooperation between APE1 and PARP1 in BER, we examined PAR-binding activity and ADP-ribosylation of human APE1 in comparison with known targets of PARP1, using the full-length, N-terminally truncated and catalytically inactive forms of APE1. The protein binds preferentially large ADP-ribose polymers, being very similar to DNA polymerase ß (Polß) but contrasting with the scaffold XRCC1 protein. The interaction with PAR involves the universally conserved catalytic portion and the eukaryote-specific extension of APE1. The ADP-ribosylation of APE1 depends on the structure of PARP1-activating DNA, contrasting APE1 with Polß and XRCC1. Relative levels of APE1 modification in the presence of different DNA substrates were found to correlate with affinities of the DNAs for APE1 and substrate activities in the enzymatic incision, suggesting the ADP-ribosylation to occur within the DNA-mediated ternary complex. This conclusion was confirmed by importance of the length of DNA region 3' to the AP site for the modification. Deletion of the N-terminal extension of APE1 produced no significant influence on both the ADP-ribosylation efficiency and hydrolytic stability of the modified protein, suggesting localization of target amino acids in the conserved catalytic portion. The most efficient ADP-ribosylation of the catalytically inactive APE1 mutant was shown to reduce the level of PARP1 automodification, suggesting possible role of APE1 in modulating PARP1 activity. Our data on primary role of DNA in controlling the PARP-catalysed modification provide new insights into mechanisms of protein targeting for ADP-ribosylation.


Assuntos
DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Adenosina Difosfato Ribose/metabolismo , Clonagem Molecular , Dano ao DNA , Reparo do DNA , Escherichia coli/genética , Ligação Proteica
3.
FEBS J ; 283(18): 3371-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27406238

RESUMO

ADP-ribosylation is a conserved post-translational protein modification that plays a role in all major cellular processes, particularly DNA repair, transcription, translation, stress response and cell death. Hence, dysregulation of ADP-ribosylation is linked to the physiopathology of several human diseases including cancers, diabetes and neurodegenerative disorders. Protein ADP-ribosylation can be reversed by the macrodomain-containing proteins PARG, TARG1, MacroD1 and MacroD2, which hydrolyse the ester bond known to link proteins to ADP-ribose as well as consecutive ADP-ribose subunits; targeting this bond can thus result in the complete removal of the protein modification or the conversion of poly(ADP-ribose) to mono(ADP-ribose). Recently, proteins containing the NUDIX domain - namely human NUDT16 and bacterial RppH - have been shown to process in vitro protein ADP-ribosylation through an alternative mechanism, converting it into protein-conjugated ribose-5'-phosphate (R5P, also known as pR). Though this protein modification was recently identified in mammalian tissues, its physiological relevance and the mechanism of generating protein phosphoribosylation are currently unknown. Here, we identified ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) as the first known mammalian enzyme lacking a NUDIX domain to generate pR from ADP-ribose on modified proteins in vitro. Thus, our data show that at least two enzyme families - Nudix and ENPP/NPP - are able to metabolize protein-conjugated ADP-ribose to pR in vitro, suggesting that pR exists and may be conserved from bacteria to mammals. We also demonstrate the utility of ENPP1 for converting protein-conjugated mono(ADP-ribose) and poly(ADP-ribose) into mass spectrometry-friendly pR tags, thus facilitating the identification of ADP-ribosylation sites.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , ADP Ribose Transferases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Técnicas In Vitro , Camundongos , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirofosfatases/química , Pirofosfatases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA