Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Appl Fluoresc ; 11(4)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37586380

RESUMO

The cell membrane has a fundamental role in the cell life cycle but there's still much to be learned about its heterogeneous structure, regulation, and protein interaction. Additionally, the protein-membrane interaction is often overlooked when studying specific protein dynamics. In this work, we present a new tool for a better understanding of protein dynamics and membrane function using live cells and fast non-invasive techniques without the need for individual particle tracking. To this end, we used the 2D-pair correlation function (2D-pCF) to study protein interactions across cellular membranes. We performed numerical simulations and confocal experiments using a GAP-mEGFP fusion construct known to interact with the plasmatic membrane. Our results demonstrate that based on a quantitative correlation analysis as the 2D pair correlation of the signal intensities, is possible to characterize protein-membrane interactions in live systems and real-time. Combining experimental and numerical results this work presents a new powerful approach to the study of the dynamic protein-membrane interaction.


Assuntos
Fluorescência , Membrana Celular
2.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216436

RESUMO

Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (ß/α)8-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynAΔ29) in which two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-ß-d-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in secondary structure and increased flexibility of XynAΔ29. Molecular dynamics simulations revealed that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions within the (ß/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is more intense in XynAΔ29 than in XynA and promotes the formation of a wider active site that allows the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing (ß/α)8-barrel domain.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico/fisiologia , Hidrólise , Especificidade por Substrato/fisiologia , Xilanos/metabolismo , Xilose/metabolismo
3.
Biophys Rev ; 13(6): 943-953, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35059019

RESUMO

Bacteria sense intracellular and environmental signals using an array of proteins as antennas. The information is transmitted from such sensory modules to other protein domains that act as output effectors. Sensor and effector can be part of the same polypeptide or instead be separate diffusible proteins that interact specifically. The output effector modules regulate physiologic responses, allowing the cells to adapt to the varying conditions. These biological machineries are known as signal transduction systems (STSs). Despite the captivating architectural diversity exhibited by STS proteins, a universal feature is their allosteric regulation: signal binding at one site modifies the activity at a physically distant site. Allostery requires protein plasticity, precisely encoded within their 3D structures, and implicating programmed molecular motions. This review summarizes how STS proteins connect stimuli to specific responses by exploiting allostery and protein plasticity. Illustrative examples spanning a wide variety of protein folds will focus on one- and two-component systems (TCSs). The former encompass the entire transmission route within a single polypeptide, whereas TCSs have evolved as separate diffusible proteins that interact specifically, sometimes including additional intermediary proteins in the pathway. Irrespective of their structural diversity, STS proteins are able to modulate their own molecular motions, which can be relatively slow, rigid-body movements, all the way to fast fluctuations in the form of macromolecular flexibility, thus spanning a continuous protein dynamics spectrum. In sum, STSs rely on allostery to steer information transmission, going from simple two-state switching to rich multi-state conformational order/disorder transitions.

4.
ChemMedChem ; 15(18): 1682-1690, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32663362

RESUMO

Angiotensin converting enzyme 2 (ACE2) is the human receptor that interacts with the spike protein of coronaviruses, including the one that produced the 2020 coronavirus pandemic (COVID-19). Thus, ACE2 is a potential target for drugs that disrupt the interaction of human cells with SARS-CoV-2 to abolish infection. There is also interest in drugs that inhibit or activate ACE2, that is, for cardiovascular disorders or colitis. Compounds binding at alternative sites could allosterically affect the interaction with the spike protein. Herein, we review biochemical, chemical biology, and structural information on ACE2, including the recent cryoEM structures of full-length ACE2. We conclude that ACE2 is very dynamic and that allosteric drugs could be developed to target ACE2. At the time of the 2020 pandemic, we suggest that available ACE2 inhibitors or activators in advanced development should be tested for their ability to allosterically displace the interaction between ACE2 and the spike protein.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/metabolismo , Betacoronavirus/química , Peptidil Dipeptidase A/metabolismo , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Regulação Alostérica , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/química , Domínio Catalítico , Humanos , Peptidil Dipeptidase A/química , Ligação Proteica , Domínios Proteicos , Receptores Virais/antagonistas & inibidores , Receptores Virais/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
5.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947679

RESUMO

Two-pore domain potassium (K2P) channels maintain the cell's background conductance by stabilizing the resting membrane potential. They assemble as dimers possessing four transmembrane helices in each subunit. K2P channels were crystallized in "up" and "down" states. The movements of the pore-lining transmembrane TM4 helix produce the aperture or closure of side fenestrations that connect the lipid membrane with the central cavity. When the TM4 helix is in the up-state, the fenestrations are closed, while they are open in the down-state. It is thought that the fenestration states are related to the activity of K2P channels and the opening of the channels preferentially occurs from the up-state. TASK-2, a member of the TALK subfamily of K2P channels, is opened by intracellular alkalization leading the deprotonation of the K245 residue at the end of the TM4 helix. This charge neutralization of K245 could be sensitive or coupled to the fenestration state. Here, we describe the relationship between the states of the intramembrane fenestrations and K245 residue in TASK-2 channel. By using molecular modeling and simulations, we show that the protonated state of K245 (K245+) favors the open fenestration state and, symmetrically, that the open fenestration state favors the protonated state of the lysine residue. We show that the channel can be completely blocked by Prozac, which is known to induce fenestration opening in TREK-2. K245 protonation and fenestration aperture have an additive effect on the conductance of the channel. The opening of the fenestrations with K245+ increases the entrance of lipids into the selectivity filter, blocking the channel. At the same time, the protonation of K245 introduces electrostatic potential energy barriers to ion entrance. We computed the free energy profiles of ion penetration into the channel in different fenestration and K245 protonation states, to show that the effects of the two transformations are summed up, leading to maximum channel blocking. Estimated rates of ion transport are in qualitative agreement with experimental results and support the hypothesis that the most important barrier for ion transport under K245+ and open fenestration conditions is the entrance of the ions into the channel.


Assuntos
Concentração de Íons de Hidrogênio , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Células HEK293 , Humanos , Ativação do Canal Iônico , Íons/química , Íons/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
6.
Arch Biochem Biophys ; 680: 108243, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31899145

RESUMO

Cytochrome c is a prototypical multifunctional protein that is implicated in a variety of processes that are essential both for sustaining and for terminating cellular life. Typically, alternative functions other than canonical electron transport in the respiratory chain are associated to alternative conformations. In this work we apply a combined experimental and computational study of Cyt c variants to assess whether the parameters that regulate the canonical electron transport function of Cyt c are correlated with those that determine the transition to alternative conformations, using the alkaline transition as a model conformational change. The results show that pKa values of the alkaline transition correlate with the activation energies of the frictionally-controlled electron transfer reaction, and that both parameters are mainly modulated by the flexibility of the Ω-loop 70-85. Reduction potentials and non-adiabatic ET reorganization energies, on the other hand, are both modulated by the flexibilities of the Ω-loops 40-57 and 70-85. Finally, all the measured thermodynamic and kinetic parameters that characterize both types of processes exhibit systematic variations with the dynamics of the hydrogen bond between the axial ligand Met80 and the second sphere ligand Tyr67, thus highlighting the critical role of Tyr67 in controlling canonical and alternative functions of Cyt c.


Assuntos
Citocromos c/química , Animais , Transporte de Elétrons , Cavalos , Ligação de Hidrogênio , Cinética , Oxirredução , Conformação Proteica , Termodinâmica
7.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438515

RESUMO

Light-chain amyloidosis (AL) is the most common systemic amyloidosis and is caused by the deposition of mainly insoluble immunoglobulin light chain amyloid fibrils in multiple organs, causing organ failure and eventually death. The germ-line λ6a has been implicated in AL, where a single point mutant at amino acid 24 (6aJL2-R24G) has been observed in around 25% of patient samples. Structural analysis has shown only subtle differences between both proteins; nevertheless, 6aJL2-R24G is more prone to form amyloid fibrils. To improve our understanding of the role of protein flexibility in amyloid fibril formation, we have used a combination of solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations to complement the structural insight with dynamic knowledge. Fast timescale dynamics (ps-ns) were equivalent for both proteins, but suggested exchange events for some residues. Even though most of the intermediate dynamics (µs-ms) occurred at a similar region for both proteins, the specific characteristics are very different. A minor population detected in the dispersion experiments could be associated with the formation of an off-pathway intermediate that protects from fiber formation more efficiently in the germ-line protein. Moreover, we found that the hydrogen bond patterns for both proteins are similar, but the lifetime for the mutant is significantly reduced; as a consequence, there is a decrease in the stability of the tertiary structure that extends throughout the protein and leads to an increase in the propensity to form amyloid fibers.


Assuntos
Amiloidose/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína
8.
Mol Biol Evol ; 36(9): 2053-2068, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028708

RESUMO

Recent studies have drawn attention to the evolution of protein dynamics, in addition to sequence and structure, based on the premise structure-encodes-dynamics-encodes-function. Of interest is to understand how functional differentiation is accomplished while maintaining the fold, or how intrinsic dynamics plays out in the evolution of structural variations and functional specificity. We performed a systematic computational analysis of 26,899 proteins belonging to 116 CATH superfamilies. Characterizing cooperative mechanisms and convergent/divergent features that underlie the shared/differentiated dynamics of family members required a methodology that lends itself to efficient analyses of large ensembles of proteins. We therefore introduced, SignDy, an integrated pipeline for evaluating the signature dynamics of families based on elastic network models. Our analysis confirmed that family members share conserved, highly cooperative (global) modes of motion. Importantly, our analysis discloses a subset of motions that sharply distinguishes subfamilies, which lie in a low-to-intermediate frequency regime of the mode spectrum. This regime has maximal impact on functional differentiation of families into subfamilies, while being evolutionarily conserved among subfamily members. Notably, the high-frequency end of the spectrum also reveals evolutionary conserved features across and within subfamilies; but in sharp contrast to global motions, high-frequency modes are minimally collective. Modulation of robust/conserved global dynamics by low-to-intermediate frequency fluctuations thus emerges as a versatile mechanism ensuring the adaptability of selected folds and the specificity of their subfamilies. SignDy further allows for dynamics-based categorization as a new layer of information relevant to distinctive mechanisms of action of subfamilies, beyond sequence or structural classifications.


Assuntos
Evolução Molecular , Simulação de Dinâmica Molecular , Dobramento de Proteína , Software , Biologia Computacional/métodos , Estrutura Molecular
9.
Methods Mol Biol ; 1851: 353-365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30298408

RESUMO

The native state of proteins is composed of conformers in dynamical equilibrium. In this chapter, different issues related to conformational diversity are explored using a curated and experimentally based database called CoDNaS (Conformational Diversity in the Native State). This database is a collection of redundant structures for the same sequence. CoDNaS estimates the degree of conformational diversity using different global and local structural similarity measures. It allows the user to explore how structural differences among conformers change as a function of several structural features providing further biological information. This chapter explores the measurement of conformational diversity and its relationship with sequence divergence. Also, it discusses how proteins with high conformational diversity could affect homology modeling techniques.


Assuntos
Proteínas/química , Bases de Dados de Proteínas , Evolução Molecular , Simulação de Dinâmica Molecular , Conformação Proteica
10.
BMC Bioinformatics ; 19(1): 27, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382320

RESUMO

BACKGROUND: Biocatalysis in organic solvents is nowadays a common practice with a large potential in Biotechnology. Several studies report that proteins which are co-crystallized or soaked in organic solvents preserve their fold integrity showing almost identical arrangements when compared to their aqueous forms. However, it is well established that the catalytic activity of proteins in organic solvents is much lower than in water. In order to explain this diminished activity and to further characterize the behaviour of proteins in non-aqueous environments, we performed a large-scale analysis (1737 proteins) of the conformational diversity of proteins crystallized in aqueous and co-crystallized or soaked in non-aqueous media. RESULTS: Using proteins' experimentally determined conformational diversity taken from CoDNaS database, we found that proteins in non-aqueous media display much lower conformational diversity when compared to the corresponding conformers obtained in water. When conformational diversity is compared between conformers obtained in different non-aqueous media, their structural differences are larger and mostly independent of the presence of cognate ligands. We also found that conformers corresponding to non-aqueous media have larger but less flexible cavities, lower number of disordered regions and lower active-site residue mobility. CONCLUSIONS: Our results show that non-aqueous media conformers have specific structural features and that they do not adopt extreme conformations found in aqueous media. This makes them clearly different from their corresponding aqueous conformers.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Solventes/química , Água/química , Biocatálise , Bases de Dados de Proteínas , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo
11.
Protein Sci ; 26(11): 2195-2206, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28815769

RESUMO

A key concept in template-based modeling (TBM) is the high correlation between sequence and structural divergence, with the practical consequence that homologous proteins that are similar at the sequence level will also be similar at the structural level. However, conformational diversity of the native state will reduce the correlation between structural and sequence divergence, because structural variation can appear without sequence diversity. In this work, we explore the impact that conformational diversity has on the relationship between structural and sequence divergence. We find that the extent of conformational diversity can be as high as the maximum structural divergence among families. Also, as expected, conformational diversity impairs the well-established correlation between sequence and structural divergence, which is nosier than previously suggested. However, we found that this noise can be resolved using a priori information coming from the structure-function relationship. We show that protein families with low conformational diversity show a well-correlated relationship between sequence and structural divergence, which is severely reduced in proteins with larger conformational diversity. This lack of correlation could impair TBM results in highly dynamical proteins. Finally, we also find that the presence of order/disorder can provide useful beforehand information for better TBM performance.


Assuntos
Modelos Moleculares , Proteínas/química , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Bases de Dados de Proteínas , Alinhamento de Sequência
12.
Biochim Biophys Acta Biomembr ; 1859(1): 1-9, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27773565

RESUMO

In this study, we combined electron paramagnetic resonance (EPR) spectroscopy with an analysis of biophysical cellular parameters to study the mechanisms underlying the in vitro anti-leishmanial activity of miltefosine (MT). A thiol-specific spin label attached to membrane-bound proteins of Leishmania amazonensis and peritoneal macrophages indicated that MT may bind to plasma membrane proteins in large quantities via a detergent-like action and cause structural changes associated with a marked increase in dynamics and exposure to an aqueous environment. EPR spectra of a spin-labeled stearic acid indicated strong interactions between the probe and membrane proteins and a marked increase in the membrane fluidity of MT-treated cells. The cytotoxicity of MT was found to depend on the cell concentration used in the assay. This dependence was described by an equation involving the 50% inhibitory concentrations of MT in the aqueous medium (cw50) and the cell membrane (cm50) and the membrane-aqueous medium partition coefficient of MT (K). With a cw50 of 8.7µM, macrophages were less sensitive to MT than amastigotes and promastigotes of Leishmania, which had cw50 values of 2.4-3.1µM. The estimated cm50 of MT for Leishmania was 1.8M, which appears sufficient to cause ruptures or formation of pores in the plasma membrane. Additionally, we demonstrated that the changes in the plasma membrane detected by EPR spectroscopy occurred at cytotoxic concentrations of MT, as assessed through in vitro assays.


Assuntos
Antiprotozoários/farmacologia , Membrana Celular/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Proteínas de Membrana/química , Fosforilcolina/análogos & derivados , Proteínas de Protozoários/química , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Concentração Inibidora 50 , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/metabolismo , Estágios do Ciclo de Vida/fisiologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/farmacologia , Cultura Primária de Células , Proteínas de Protozoários/metabolismo , Marcadores de Spin
13.
Front Physiol ; 7: 429, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721798

RESUMO

Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the ß-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the "disease of the sarcomere." The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.

14.
Proteins ; 84(11): 1567-1575, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410025

RESUMO

Cdc25B phosphatases are involved in cell cycle checkpoints and have become a possible target for developing new anticancer drugs. A more rational design of Cdc25B ligands would benefit from detailed knowledge of its tertiary structure. The conformational flexibility of the C-terminal region of the Cdc25B catalytic domain has been debated recently and suggested to play an important structural role. Here, a combination of experimental NMR measurements and molecular dynamics simulations for the complete catalytic domain of the Cdc25B phosphatase is presented. The stability of the C-terminal α-helix is confirmed, but the last 20 residues in the complete catalytic domain are very flexible, partially occlude the active site and may establish transient contacts with the protein core. This flexibility in the C-terminal tail may modulate the molecular recognition of natural substrates and competitive inhibitors by Cdc25B. Proteins 2016; 84:1567-1575. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Recombinantes de Fusão/química , Fosfatases cdc25/química , Motivos de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Maleabilidade , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
15.
Biophys Rev ; 8(2): 107-120, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28510050

RESUMO

Intrinsic flexibility is closely related to protein function, and a plethora of important regulatory proteins have been found to be flexible, multi-domain or even intrinsically disordered. On the one hand, understanding such systems depends on how these proteins behave in solution. On the other, small-angle X-ray scattering (SAXS) is a technique that fulfills the requirements to study protein structure and dynamics relatively quickly with few experimental limitations. Molecular chaperones from Hsp70 and Hsp90 families are multi-domain proteins containing flexible and/or disordered regions that play central roles in cellular proteostasis. Here, we review the structure and function of these proteins by SAXS. Our general approach includes the use of SAXS data to determine size and shape parameters, as well as protein shape reconstruction and their validation by using accessory biophysical tools. Some remarkable examples are presented that exemplify the potential of the SAXS technique. Protein structure can be determined in solution even at limiting protein concentrations (for example, human mortalin, a mitochondrial Hsp70 chaperone). The protein organization, flexibility and function (for example, the J-protein co-chaperones), oligomeric status, domain organization, and flexibility (for the Hsp90 chaperone and the Hip and Hep1 co-chaperones) may also be determined. Lastly, the shape, structural conservation, and protein dynamics (for the Hsp90 chaperone and both p23 and Aha1 co-chaperones) may be studied by SAXS. We believe this review will enhance the application of the SAXS technique to the study of the molecular chaperones.

16.
J Comput Chem ; 36(7): 424-32, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25516482

RESUMO

A comparison between different conformations of a given protein, relating both structure and dynamics, can be performed in terms of combined principal component analysis (combined-PCA). To that end, a trajectory is obtained by concatenating molecular dynamics trajectories of the individual conformations under comparison. Then, the principal components are calculated by diagonalizing the correlation matrix of the concatenated trajectory. Since the introduction of this approach in 1995 it has had a large number of applications. However, the interpretation of the eigenvectors and eigenvalues so obtained is based on intuitive foundations, because analytical expressions relating the concatenated correlation matrix with those of the individual trajectories under consideration have not been provided yet. In this article, we present such expressions for the cases of two, three, and an arbitrary number of concatenated trajectories. The formulas are simple and show what is to be expected and what is not to be expected from a combined-PCA. Their correctness and usefulness is demonstrated by discussing some representative examples. The results can be summarized in a simple sentence: the correlation matrix of a concatenated trajectory is given by the average of the individual correlation matrices plus the correlation matrix of the individual averages. From this it follows that the combined-PCA of trajectories belonging to different free energy basins provides information that could also be obtained by alternative and more straightforward means.


Assuntos
Técnicas de Química Analítica , Proteínas/química , Análise de Componente Principal , Conformação Proteica
17.
J Proteomics ; 104: 48-56, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24530624

RESUMO

Hsp70 cycles from an ATP-bound state, in which the affinity for unfolded polypeptides is low, to an ADP-bound state, in which the affinity for unfolded polypeptides is high, to assist with cell proteostasis. Such cycling also depends on co-chaperones because these proteins control both the Hsp70 ATPase activity and the delivery of unfolded polypeptide chains. Although it is very important, structural information on the entire protein is still scarce. This work describes the first cloning of a cDNA predicted to code for a cytosolic Saccharum spp. (sugarcane) Hsp70, named SsHsp70 here, the purification of the recombinant protein and the characterization of its structural conformation in solution by chemical cross-linking coupled to mass spectrometry. The in vivo expression of SsHsp70 in sugarcane extracts was confirmed by Western blot. Recombinant SsHsp70 was monomeric, both ADP and ATP binding increased its stability and it was efficient in cooperating with co-chaperones: ATPase activity was stimulated by Hsp40s, and it aided the refolding of an unfolded polypeptide delivered by a member of the small Hsp family. The structural conformation results favor a model in which nucleotide-free SsHsp70 is highly dynamic and may fluctuate among different conformations that may resemble those in which nucleotide is bound. BIOLOGICAL SIGNIFICANCE: Validation of a sugarcane EST as a true mRNA that encodes a cytosolic Hsp70 (SsHsp70) as confirmed by in vivo expression and characterization of the structure and function of the recombinant protein. SsHsp70 was monomeric, both ADP and ATP binding increased its stability and was efficient in interacting and cooperating with co-chaperones to enhance ATPase activity and refold unfolded proteins. The conformation of nucleotide-free SsHsp70 in solution was much more dynamic than suggested by crystal structures of other Hsp70s. This article is part of a Special Issue entitled: Environmental and structural proteomics.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/ultraestrutura , Espectrometria de Massas/métodos , Modelos Químicos , Modelos Moleculares , Saccharum/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica
18.
Biophys Chem ; 184: 44-53, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24056191

RESUMO

The flavoprotein old yellow enzyme of Trypanosoma cruzi (TcOYE) is an oxidoreductase that uses NAD(P)H as cofactor. This enzyme is clinically relevant due to its role in the action mechanism of some trypanocidal drugs used in the treatment of Chagas' disease by producing reactive oxygen species. In this work, the recombinant enzyme TcOYE was produced and collectively, X-ray crystallography, small angle X-ray scattering, analytical ultracentrifugation and molecular dynamics provided a detailed description of its structure, specificity and hydrodynamic behavior. The crystallographic structure at 1.27Å showed a classical (α/ß)8 fold with the FMN prosthetic group buried at the positively-charged active-site cleft. In solution, TcOYE behaved as a globular monomer, but it exhibited a molecular envelope larger than that observed in the crystal structure, suggesting intrinsic protein flexibility. Moreover, the binding mode of ß-lapachone, a trypanocidal agent, and other naphthoquinones was investigated by molecular docking and dynamics suggesting that their binding to TcOYE are stabilized mainly by interactions with the isoalloxazine ring from FMN and residues from the active-site pocket.


Assuntos
NADPH Desidrogenase/química , NADPH Desidrogenase/metabolismo , Trypanosoma cruzi/enzimologia , Cristalografia por Raios X , Modelos Moleculares , NADPH Desidrogenase/genética , Conformação Proteica , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA