Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(19): 3989-3998, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38762360

RESUMO

BACKGROUND: The COVID-19 pandemic is over but the highly immunized or naturally exposed global population still requires booster vaccinations against newly emerging SARS-CoV-2 variants. We assessed safety and immunogenicity of booster doses of COVID-19 vaccines based on three different platforms in a setting that mimics the current routine practice in Brazil. METHODS: In this phase 3 study from 14 February 2023 to 12 June 2023 we enrolled previously immunized adults to receive an additional booster dose of one of three vaccines. Immunogenicity against ancestor SARS-CoV-2 and Omicron BF.7, BQ.1.1.3, and XBB.1.5.6 sub-lineages was measured as ELISA IgG or virus neutralizing (VNT) antibodies and safety/reactogenicity assessed using diary cards. RESULTS: Volunteers with a history of full primary COVID-19 immunization striated to three cohorts according to their previous booster vaccination history-0 (n = 26), 1 (n = 140) or 2 (n = 606) booster vaccinations-were randomized 2:1:1 to receive either recombinant protein (SCB-2019, Clover), adenovirus-vector (ChAdOx1-S, AstraZeneca/Fiocruz), or mRNA (BNT162b2, Pfizer/Wyeth). Baseline antibody titers were higher in individuals who had received one or two boosters and titers against both ancestor and Omicron sub-lineages increased in all groups regardless of the number of previous booster doses or the vaccine used. Day 28 geometric mean titers (GMTs) and geometric mean-fold rises (GMFR) against all variants were higher after BNT162b than SCB-2019 or ChAdOx1-S, but BNT162b groups displayed more rapid antibody waning at Day 84. Within cohorts each vaccine elicited similar GMFR against the different SARS-CoV-2 strains. All vaccines were well tolerated with similar solicited reactogenicity profiles. CONCLUSIONS: Protein, adenovirus-vector or mRNA vaccine boosters were equally well tolerated and immunogenic against ancestor SARS-CoV-2 and Omicron sub-lineages in fully primed adults with 0-2 prior boosters. BNT162b induced the highest immune responses but also the most rapid waning of antibodies 3 months after vaccination. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT05812586.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Imunogenicidade da Vacina , SARS-CoV-2 , Humanos , Imunização Secundária/métodos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , COVID-19/imunologia , Masculino , Feminino , Adulto , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Pessoa de Meia-Idade , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Brasil , Adulto Jovem , Vacinação/métodos
2.
Vaccine ; 35(38): 5140-5147, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28818567

RESUMO

Despite the success of the available polysaccharide-based vaccines against Streptococcus pneumoniae in preventing invasive diseases, this bacterium remains a major cause of death in many parts of the world. New vaccine strategies are needed in order to increase protection. Thus, the utilization of fusion proteins is being investigated as an alternative to the current formulations. In the present work, we demonstrate that a chimeric protein, composed of PspA and PotD in fusion is able to maintain the protective characteristics of both parental proteins, providing protection against systemic infection while reducing nasal colonization. The hybrid was not able to improve the response against invasive disease elicited by PspA alone, but the inclusion of PotD was able to reduce colonization, an effect never observed using subcutaneous immunization with PspA. The mechanisms underlying the protective efficacy of the rPspA-PotD hybrid protein were investigated, revealing the production of antibodies with an increased binding capacity to pneumococcal strains of diverse serotypes and genetic backgrounds, enhanced opsonophagocytosis, and secretion of IL-17 by splenocytes. These findings reinforce the use of chimeric proteins based on surface antigens as an effective strategy against pneumococcal infections.


Assuntos
Nasofaringe/microbiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/uso terapêutico , Streptococcus pneumoniae/patogenicidade , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Feminino , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA