RESUMO
Plakophilin 1 (PKP1), a member of the p120ctn subfamily of the armadillo (ARM)-repeat-containing proteins, is an important structural component of cell-cell adhesion scaffolds although it can also be ubiquitously found in the cytoplasm and the nucleus. RYBP (RING 1A and YY1 binding protein) is a multifunctional intrinsically disordered protein (IDP) best described as a transcriptional regulator. Both proteins are involved in the development and metastasis of several types of tumors. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with RYBP by using in cellulo methods, namely immunofluorescence (IF) and proximity ligation assay (PLA), and in vitro biophysical techniques, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), and isothermal titration calorimetry (ITC). We also characterized the binding of the two proteins by using in silico experiments. Our results showed that there was binding in tumor and non-tumoral cell lines. Binding in vitro between the two proteins was also monitored and found to occur with a dissociation constant in the low micromolar range (~10 µM). Finally, in silico experiments provided additional information on the possible structure of the binding complex, especially on the binding ARM-PKP1 hot-spot. Our findings suggest that RYBP might be a rescuer of the high expression of PKP1 in tumors, where it could decrease the epithelial-mesenchymal transition in some cancer cells.
Assuntos
Proteínas Intrinsicamente Desordenadas , Placofilinas , Ligação Proteica , Proteínas Repressoras , Humanos , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Dicroísmo Circular , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Placofilinas/metabolismo , Placofilinas/genética , Placofilinas/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genéticaRESUMO
RYBP (Ring1 and YY 1 binding protein) is a multifunctional, intrinsically disordered protein (IDP), best described as a transcriptional regulator. It exhibits a ubiquitin-binding functionality, binds to other transcription factors, and has a key role during embryonic development. RYBP, which folds upon binding to DNA, has a Zn-finger domain at its N-terminal region. By contrast, PADI4 is a well-folded protein and it is one the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. As both proteins intervene in signaling pathways related to cancer development and are found in the same localizations within the cell, we hypothesized they may interact. We observed their association in the nucleus and cytosol in several cancer cell lines, by using immunofluorescence (IF) and proximity ligation assays (PLAs). Binding also occurred in vitro, as measured by isothermal titration calorimetry (ITC) and fluorescence, with a low micromolar affinity (~1 µM). AlphaFold2-multimer (AF2) results indicate that PADI4's catalytic domain interacts with the Arg53 of RYBP docking into its active site. As RYBP sensitizes cells to PARP (Poly (ADP-ribose) polymerase) inhibitors, we applied them in combination with an enzymatic inhibitor of PADI4 observing a change in cell proliferation, and the hampering of the interaction of both proteins. This study unveils for the first time the possible citrullination of an IDP, and suggests that this new interaction, whether it involves or not citrullination of RYBP, might have implications in cancer development and progression.
Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Linhagem Celular , Neoplasias/genética , Epigênese Genética , Proteínas Repressoras/genéticaRESUMO
The mechanisms involved in the posttranscriptional control of the replicative cycle of the human immunodeficiency virus (HIV), specifically the molecular events which allow the interaction between the viral genomic RNA (gRNA) and the cellular machinery for the transport, translation, or intracellular packaging, have not been yet elucidated. In this chapter, we describe the in situ hybridization-proximity ligation assay (ISH-PLA) to characterize interactions between the genomic RNA (gRNA) of HIV-1 and viral proteins or host proteins involved in nuclear export and translation initiation. We also present data that validate the ISH-PLA as a simple and useful tool to study HIV-1 gRNA-protein interactions within cells.
Assuntos
HIV-1/genética , Hibridização In Situ/métodos , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células HeLa , Humanos , Ligação ProteicaRESUMO
Cells are daily submitted to high levels of DNA lesions that trigger complex pathways and cellular responses by cell cycle arrest, apoptosis, alterations in transcriptional response, and the onset of DNA repair. Members of the NIMA-related kinase (NEK) family have been related to DNA damage response and repair and the first insight about NEK5 in this context is related to its role in centrosome separation resulting in defects in chromosome integrity. Here we investigate the potential correlation between NEK5 and the DNA damage repair index. The effect of NEK5 in double-strand breaks caused by etoposide was accessed by alkaline comet assay and revealed that NEK5-silenced cells are more sensitive to etoposide treatment. Topoisomerase IIß (TOPIIß) is a target of etoposide that leads to the production of DNA breaks. We demonstrate that NEK5 interacts with TOPIIß, and the dynamics of this interaction is evaluated by proximity ligation assay. The complex NEK5/TOPIIß is formed immediately after etoposide treatment. Taken together, the results of our study reveal that NEK5 depletion increases DNA damage and impairs proper DNA damage response, pointing out NEK5 as a potential kinase contributor to genomic stability.