Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 14: 253-263, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880055

RESUMO

Rehabilitative exercise following a brain stroke has beneficial effects on the morphological plasticity of neurons. Particularly, voluntary running exercise after focal cerebral ischemia promotes functional recovery and ameliorates ischemia-induced dendritic spine loss in the peri-infarct motor cortex layer 5. Moreover, neuronal morphology is affected by changes in the perineuronal environment. Glial cells, whose phenotypes may be altered by exercise, are known to play a pivotal role in the formation of this perineuronal environment. Herein, we investigated the effects of voluntary running exercise on glial cells after middle cerebral artery occlusion. Voluntary running exercise increased the population of glial fibrillary acidic protein-positive astrocytes born between post-operative days (POD) 0 and 3 on POD15 in the peri-infarct cortex. After exercise, transcriptomic analysis of post-ischemic astrocytes revealed 10 upregulated and 70 downregulated genes. Furthermore, gene ontology analysis showed that the 70 downregulated genes were significantly associated with neuronal morphology. In addition, exercise reduced the number of astrocytes expressing lipocalin 2, a regulator of dendritic spine density, on POD15. Our results suggest that exercise modifies the composition of astrocytic population and their phenotype.

2.
J Taibah Univ Med Sci ; 18(4): 802-811, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36852243

RESUMO

Objectives: 1. Identification of protein expression and subcellular localization of E-cadherin (E-cad), p120 catenin (P120ctn), and Kaiso in oral cancer (OC). 2. To study the protein expression of cyclin D1 and c-Myc (Kaiso targets) and determine their relationship with the expression and localization of Kaiso. Methods: Histological grading was performed in accordance with Broder's criteria. Expression and localization data for E-cad, p120ctn, Kaiso, cyclin D1, and c-Myc were acquired using immunohistochemistry. Data were analyzed using SPSS version 21. The chi-square test was used to measure the statistical significance of associations, with p < 0.05 as statistically significant. Results: Of 47 OC cases, 36% showed low E-cad expression and 34% showed low p120ctn. Low Kaiso expression was recognized in 78% of tumor specimens. Aberrant cytoplasmic localization of p120ctn was seen in 80.8% cases. Cytoplasmic Kaiso localization was appreciated in 87% of tumor tissues, whereas 29.7% lacked any nuclear Kaiso. Kaiso expression was significantly associated with the expression of cyclin D1 but not with c-Myc. Conclusion: The present study identified a change in the localization of Kaiso in OC. The significance of this in relation to OC and tumor prognosis needs to be investigated with further studies using larger sample sizes and more sensitive molecular tools.

3.
Clin Transl Radiat Oncol ; 39: 100583, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36713978

RESUMO

Background: Prostate Specific Membrane Antigen (PSMA) - positron emission tomography (PET) guides metastasis-directed radiotherapy (MDRT) in prostate cancer (PrCa). However, its value as a treatment response assessment tool after MDRT remains unclear. Importantly, there is limited understanding of the potential of radiotherapy (RT) to alter PSMA gene (folate hydrolase 1; FOLH1) expression. Methodology: We reviewed a series of 11 men with oligo-metastatic PrCa (25 metastasis sites) treated with MDRT before re-staging with 18F-DCFPyL (PSMA) PET upon secondary recurrence. Acute effects of RT on PSMA protein and mRNA levels were examined with qPCR and immunoblotting in human wild-type androgen-sensitive (LNCap), castrate-resistant (22RV1) and castrate-resistant neuroendocrine (PC3 and DU145) PrCa cell lines. Xenograft tumors were analyzed with immunohistochemistry. Further, we examined PSMA expression in untreated and irradiated radio-resistant (RR) 22RV1 (22RV1-RR) and DU145 (DU145-RR) cells and xenografts selected for survival after high-dose RT. Results: The majority of MDRT-treated lesions showed lack of PSMA-PET/CT avidity, suggesting treatment response even after low biological effective dose (BED) MDRT. We observed similar high degree of heterogeneity of PSMA expression in both human specimens and in xenograft tumors. PSMA was highly expressed in LNCap and 22RV1 cells and tumors but not in the neuroendocrine PC3 and DU145 models. Single fraction RT caused detectable reduction in PSMA protein but not in mRNA levels in LNCap cells and did not significantly alter PSMA protein or mRNA levels in tissue culture or xenografts of the other cell lines. However, radio-resistant 22RV1-RR cells and tumors demonstrated marked decrease of PSMA transcript and protein expression over their parental counterparts. Conclusions: PSMA-PET may be a promising tool to assess RT response in oligo-metastatic PrCa. However, future systematic investigation of this concept should recognize the high degree of heterogeneity of PSMA expression within prostate tumors and the risk for loss of PSMA expression in tumor surviving curative courses of RT.

4.
JHEP Rep ; 4(10): 100533, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36052221

RESUMO

Background & Aims: Strategies to implement HBV screening and treatment are critical to achieve HBV elimination but have been inadequately evaluated in sub-Saharan Africa (sSA). Methods: We assessed the feasibility of screen-and-treat interventions in 3 real-world settings (community, workplace, and hospital) in Senegal. Adult participants were screened using a rapid HBsAg point-of-care test. The proportion linked to care, the proportion who had complete clinical staging (alanine transaminase [ALT], viral load, and FibroScan®), and the proportion eligible for treatment were compared among the 3 intervention groups. Results: In 2013-2016, a total of 3,665 individuals were screened for HBsAg in the community (n = 2,153) and in workplaces (n = 1,512); 199/2,153 (9.2%) and 167/1,512 (11%) were HBsAg-positive in the community and workplaces, respectively. In the hospital setting (outpatient clinics), 638 HBsAg-positive participants were enrolled in the study. All infected participants were treatment naïve. Linkage to care was similar among community-based (69.9%), workplace-based (69.5%), and hospital-based interventions (72.6%, p = 0.617). Of HBV-infected participants successfully linked to care, full clinical staging was obtained in 47.5% (66/139), 59.5% (69/116), and 71.1% (329/463) from the community, workplaces, and hospitals, respectively (p <0.001). The proportion eligible for treatment (EASL criteria) differed among community- (9.1%), workplace- (30.4%), and hospital-based settings (17.6%, p = 0.007). Acceptability of antiviral therapy, adherence, and safety at 1 year were very good. Conclusions: HBV screen-and-treat interventions are feasible in non-hospital and hospital settings in Senegal. However, the continuum of care is suboptimal owing to limited access to full clinical staging. Improvement in access to diagnostic services is urgently needed in sSA. Lay summary: Hepatitis B infection is highly endemic in Senegal. Screening for infection can be done outside hospitals, in communities or workplaces. However, the hepatitis B continuum of care is suboptimal in Senegal and needs to be simplified to scale-up diagnosis and treatment coverage.

5.
Regen Ther ; 21: 351-361, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36161099

RESUMO

Introduction: Ulcerative colitis (UC) is an inflammatory bowel disease characterized by repeated remissions and relapses. Immunosuppressive drugs have facilitated the induction and maintenance of remission in many patients with UC. However, immunosuppressive drugs cannot directly repair impaired intestinal mucosa and are insufficient for preventing relapse. Therefore, new treatment approaches to repair the damaged epithelium in UC have been attempted through the transplantation of intestinal organoids, which can be differentiated into mucosa by embedding in Matrigel, generated from patient-derived intestinal stem cells. The method, however, poses the challenge of yielding sufficient cells for UC therapy, and patient-derived cells might already have acquired pathological changes. In contrast, human induced pluripotent stem (iPS) cells generated from healthy individuals are infinitely proliferated and can be differentiated into target cells. Recently developed human iPS cell-derived intestinal organoids (HIOs) aim to generate organoids that closely resemble the adult intestine. However, no study till date has reported HIOs injected into in vivo inflammatory models, and it remains unclear whether HIOs with cells that closely resemble the adult intestine or with intestinal stem cells retain the better ability to repair tissue in colitis. Methods: We generated two types of HIOs via suspension culture with and without small-molecule compounds: HIOs that include predominantly more intestinal stem cells [HIO (A)] and those that include predominantly more intestinal epithelial and secretory cells [HIO (B)]. We examined whether the generated HIOs engrafted in vivo and compared their ability to accelerate recovery of the damaged tissue. Results: Findings showed that the HIOs expressed intestinal-specific markers such as caudal-type homeobox 2 (CDX2) and villin, and HIOs engrafted under the kidney capsules of mice. We then injected HIOs into colitis-model mice and found that the weight and clinical score of the mice injected with HIO (A) recovered earlier than that of the mice in the sham group. Further, the production of mucus and the expression of cell proliferation markers and tight junction proteins in the colon tissues of the HIO (A) group were restored to levels similar to those observed in healthy mice. However, neither HIO (A) nor HIO (B) could be engrafted into the colon. Conclusions: Effective cell therapy should directly repair tissue by engraftment at the site of injury. However, the difference in organoid property impacting the rate of tissue repair in transplantation without engraftment observed in the current study should be considered a critical consideration in the development of regenerative medicine using iPS-derived organoids.

6.
Biochem Biophys Rep ; 32: 101346, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36120491

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide, and the most common subtype of lung cancer is adenocarcinoma. RhoQ is a Rho family GTPase with primary sequence and structural similarities to Cdc42 and RhoJ. RhoQ is involved in neurite outgrowth via membrane trafficking and is essential for insulin-stimulated glucose uptake in mature adipocytes. However, the function of RhoQ in lung adenocarcinoma (LUAD) remains unclear. In this study, RhoQ siRNAs were introduced into A549 and PC-9 cells. Expression level of EMT-related genes and invasion ability were investigated using Western blot and transwell assay. To examine the relationship between RhoQ expression and prognosis of LUAD, Kaplan-Meier plotter was used. We discovered that suppressing RhoQ expression promoted TGF-ß-mediated EMT and invasion in LUAD cell lines. Furthermore, RhoQ knockdown increased Smad3 phosphorylation and Snail expression, indicating that RhoQ was involved in TGF/Smad signaling during the EMT process. Moreover, Kaplan-Meier plotter analysis revealed that low RhoQ levels were associated with poor overall survival in patients with LUAD. In conclusion, these findings shed light on RhoQ's role as a negative regulator of TGF-ß-mediated EMT in LUAD.

7.
Clin Transl Radiat Oncol ; 36: 9-15, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35733829

RESUMO

Background: The watch and wait (W&W) strategy is proposed for patients with locally advanced rectal cancer (LARC) achieving clinical complete response (cCR) after neoadjuvant radiotherapy. cCR is only in partial concordance with pathological complete response (pCR) due to persisting viable tumour cells. The aim was to investigate circulating-free-deoxyribonucleic-acid (cfDNA) as a biomarker for prediction of pCR. Materials and methods: Patients treated with neoadjuvant radiotherapy for LARC, were included in a prospective biomarker study in Aarhus, Denmark from 2017 to 2020. Plasma cfDNA levels were analysed by a direct fluorescent assay (DFA). Surgical specimens were reviewed by pathologists to categorize response to cytotoxic therapy. Results: In total, 76 patients were included with plasma available at baseline (n = 70), mid therapy (n = 50), and end of therapy (n = 54). Higher cfDNA levels were observed in LARC patients compared with healthy subjects (p < 0.01). By ROC analysis (AUC: 0.87 (95% CI, 0.81-0.92)) the optimal cut-off was 0.71 ng/µL for differentiation between healthy subjects and LARC patients. Thirteen patients obtained pCR with a median cfDNA level of 0.57 ng/µL at end of therapy. Patients with cfDNA levels at end of therapy below the cut-off (p < 0.02) and 'cfDNA responders' with descending levels greater than the 75th percentile during therapy had a significantly higher chance of pCR (p < 0.01). Conclusion: This hypothesis generating study indicates that low cfDNA levels at end of treatment or ´cfDNA responders might be associated with pCR. Quantification of cfDNA by the rapid and feasible DFA analysis could potentially facilitate personalized follow-up as a complementary tool to identify candidates for a W&W strategy.

8.
Acta Pharm Sin B ; 12(3): 1339-1350, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530159

RESUMO

DNA damage response (DDR) is a highly conserved genome surveillance mechanism that preserves cell viability in the presence of chemotherapeutic drugs. Hence, small molecules that inhibit DDR are expected to enhance the anti-cancer effect of chemotherapy. Through a recent chemical library screen, we identified shikonin as an inhibitor that strongly suppressed DDR activated by various chemotherapeutic drugs in cancer cell lines derived from different origins. Mechanistically, shikonin inhibited the activation of ataxia telangiectasia mutated (ATM), and to a lesser degree ATM and RAD3-related (ATR), two master upstream regulators of the DDR signal, through inducing degradation of ATM and ATR-interacting protein (ATRIP), an obligate associating protein of ATR, respectively. As a result of DDR inhibition, shikonin enhanced the anti-cancer effect of chemotherapeutic drugs in both cell cultures and in mouse models. While degradation of ATRIP is proteasome dependent, that of ATM depends on caspase- and lysosome-, but not proteasome. Overexpression of ATM significantly mitigated DDR inhibition and cell death induced by shikonin and chemotherapeutic drugs. These novel findings reveal shikonin as a pan DDR inhibitor and identify ATM as a primary factor in determining the chemo sensitizing effect of shikonin. Our data may facilitate the development of shikonin and its derivatives as potential chemotherapy sensitizers through inducing ATM degradation.

9.
J Clin Exp Hepatol ; 12(2): 510-518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535114

RESUMO

Background and aims: The pathophysiology of sarcopenia in cirrhosis is poorly understood. We aimed to evaluate the histological alterations in the muscle tissue of patients with cirrhosis and sarcopenia, and identify the regulators of muscle homeostasis. Methods: Computed tomography images at third lumbar vertebral level were used to assess skeletal muscle index (SMI) in 180 patients. Sarcopenia was diagnosed based on the SMI cut-offs from a population of similar ethnicity. Muscle biopsy was obtained from the vastus lateralis in 10 sarcopenic patients with cirrhosis, and the external oblique in five controls (voluntary kidney donors during nephrectomy). Histological changes were assessed by hematoxylin and eosin staining and immunohistochemistry for phospho-FOXO3, phospho-AKT, phospho-mTOR, and apoptosis markers (annexin V and caspase 3). The messenger ribonucleic acid (mRNA) expressions for MSTN, FoxO3, markers of ubiquitin-proteasome pathway (FBXO32, TRIM63), and markers of autophagy (Beclin-1 and LC3) were also quantified. Results: The prevalence of sarcopenia was 14.4%. Muscle histology in sarcopenics showed atrophic angulated fibers (P = 0.002) compared to controls. Immunohistochemistry showed a significant loss of expression of phospho-mTOR (P = 0.026) and an unaltered phospho-AKT (P = 0.089) in sarcopenic patients. There were no differences in the immunostaining for annexin-V, caspase-3, and phospho-FoxO3 between the two groups. The mRNA expressions of MSTN and Beclin-1 were higher in sarcopenics (P = 0.04 and P = 0.04, respectively). The two groups did not differ in the mRNA levels for TRIM63, FBXO32, and LC3. Conclusions: Significant muscle atrophy, increase in autophagy, MSTN gene expression, and an impaired mTOR signaling were seen in patients with sarcopenia and cirrhosis.

10.
Biotechnol Rep (Amst) ; 32: e00691, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34934640

RESUMO

Industrial fermentation provides a wide variety of bioproducts, such as food, biofuels and pharmaceuticals. Self-cycling fermentation (SCF), an advanced automated semi-continuous fermentation approach, has shown significant advantages over batch reactors (BR); including cell synchrony and improved production. Here, Saccharomyces cerevisiae engineered to overproduce shikimic acid was grown under SCF operation. This led to four-fold increases in product yield and volumetric productivity compared to BR. Transcriptomic analyses were performed to understand the cellular mechanisms leading to these increases. Results indicate an up-regulation of a large number of genes related to the cell cycle and DNA replication in the early stages of SCF cycles, inferring substantial synchronization. Moreover, numerous genes related to gluconeogenesis, the citrate cycle and oxidative phosphorylation were significantly up-regulated in the late stages of SCF cycles, consistent with significant increases in shikimic acid yield and productivity.

11.
Acta Pharm Sin B ; 11(9): 2859-2879, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589401

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo. The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool. In the current study, chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD. Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions, motor symptoms, and dopaminergic neuron death in rotenone-challenged mice. 16S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment. Remarkably, FLZ administration attenuated intestinal inflammation and gut barrier destruction, which subsequently inhibited systemic inflammation. Eventually, FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra (SN). Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon. Collectively, FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway, which contributes to one of the underlying mechanisms beneath its neuroprotective effects. Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis, suggesting its potential role as a novel therapeutic target for PD treatment.

12.
Matrix Biol Plus ; 11: 100065, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34435182

RESUMO

Astacin-like proteinases (ALPs) are regulators of tissue and extracellular matrix (ECM) homeostasis. They convey this property through their ability to convert ECM protein pro-forms to functional mature proteins and by regulating the bioavailability of growth factors that stimulate ECM synthesis. The most studied ALPs in this context are the BMP-1/tolloid-like proteinases. The other subclass of ALPs in vertebrates - the meprins, comprised of meprin α and meprin ß - are emerging as regulators of tissue and ECM homeostasis but have so far been only limitedly investigated. Here, we functionally assessed the roles of meprins in skin wound healing using mice genetically deficient in one or both meprins. Meprin deficiency did not change the course of macroscopic wound closure. However, subtle but distinct contributions of meprins to the healing process and dermal homeostasis were observed. Loss of both meprins delayed re-epithelialization and reduced macrophage infiltration. Abnormal dermal healing and ECM regeneration was observed in meprin deficient wounds. Our analyses also revealed meprin α as one proteinase responsible for maturation of pro-collagen VII to anchoring fibril-forming-competent collagen VII in vivo. Collectively, our study identifies meprins as subtle players in skin wound healing.

13.
JHEP Rep ; 3(4): 100299, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34169247

RESUMO

BACKGROUND & AIMS: Dysbiosis of the gut microbiota in response to an energy-rich Western diet and the potential leak of bacteria and/or bacterial products from the intestine to the liver is perceived as a potential risk factor for the development of non-alcoholic fatty liver disease (NAFLD). We investigated the microbiome in liver biopsies from healthy lean and obese individuals and compared it with their blood microbiome. METHODS: We examined liver biopsies from 15 healthy lean and 14 obese individuals (BMI of 18.5-25 and 30-40 kg/m2, respectively). Bacterial 16S ribosomal DNA (rDNA) was analysed by quantitative polymerase chain reaction (qPCR) and 16S metagenomic sequencing targeting the hypervariable V3-V4 region. Metagenomic analysis was performed using the linear discriminant analysis effect size (LEfSe) algorithm. Data are medians with IQRs in brackets. RESULTS: Histology revealed hepatic steatosis in 13 obese individuals and in 2 lean individuals. A robust signal from qPCR revealed significantly higher amounts of bacterial rDNA copies in liver samples from obese individuals compared with those from lean individuals (148 [118-167] vs. 77 [62-122] 16S copies/ng DNA, p <0.001). Liver biopsies from the obese group were characterised by lower alpha diversity at the phylum level (Shannon index 0.60 [0.55-0.76] vs. 0.73 [0.62-0.90], p = 0.025), and metagenomic profiling revealed a significantly higher proportion of Proteobacteria in this group (81.0% [73.0-82.4%] vs. 74.3% [68.4-78.4%], p = 0.014). CONCLUSIONS: We provide evidence for the presence of bacterial rDNA in the healthy human liver. Based on differences in the hepatic microbiome between obese individuals and healthy lean individuals, we suggest that changes in the liver microbiome could constitute an additional risk factor for the development of NAFLD. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease globally, and new evidence suggests that obesity is associated with a disturbed gut bacterial composition, which may influence the development of NAFLD. We examined the composition of bacterial DNA in liver biopsies from healthy lean and obese individuals and found a different composition of bacterial DNA in liver biopsies from the obese group. We propose that the increased bacterial DNA load in the livers of obese individuals could constitute an early risk factor for the progression of NAFLD. CLINICAL TRIAL NUMBER: NCT02337660.

14.
Toxicol Rep ; 8: 30-37, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391994

RESUMO

Millions of people around the world are chronically exposed to Arsenic (As) through food and drinking water. Studies revealed that Arsenic is genotoxic and causes damage to DNA. In this study, we evaluated Corchorus olitorius and Butea monosperma for their alleviative properties against Arsenic induced genotoxicity in vivo using Wistar Rat model. Arsenic exposed rats were given C. olitorius leaf powder and B. monosperma flower powder as supplementation with normal food. Methylation status of p53 promoter was measured using Methylation Sensitive Restriction Endonuclease PCR (MSRE-PCR) assay and mitochondrial DNA (mtDNA) copy number as well as occurrence of a common deletion in mtDNA in liver and kidney tissue was determined through quantitative realtime PCR (qPCR). Arsenic exposed rats after supplementation showed relatively less severe effects of toxicity evident by significantly higher amount of (p<0.05) mtDNA copy number and reduced occurrence of deletion containing mtDNA as well as lower levels of methylation in p53 gene promoter. Histopathological analysis revealed less severe histopathological changes of liver and kidney and normal liver and kidney function parameters in supplemented rats. So, the protective properties of B. monosperma and C. olitorius against Arsenic toxicity is evident in molecular level.

15.
Toxicol Rep ; 8: 177-185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489777

RESUMO

Gallic acid (GA) is a known phenolic compound with anti-inflammatory, antioxidant, and anti-cancer activities. The objective of this research is to evaluate the preventive role of GA against carbon tetrachloride (CCl4) induced liver fibrosis. Thirty-five (35) male Wistar rats were used in this study and were equally distributed into five groups (7 rats each). All groups were acclimatized for a week, Group I (control) rats were administered distilled water only. Group II rats were induced with a single dose of CCl4 (1.25 mL/kg in olive oil (1:1); IP) to cause hepatic damage, while Groups III, IV, and V, rats were intoxicated with CCl4. After 24 h the rats in groups III, IV, and V were given 50 mg/kg of silymarin, 50 mg/kg of GA, and 100 mg/kg of GA daily for one week respectively. Rats were sacrificed and fasting blood was estimated for biochemical analysis while the liver was excised for molecular studies. Results from this study revealed that GA significantly decreases serum hepatic enzymes, down-regulate the expression of pro-inflammatory cytokines, interleukin 1 beta (IL-1B), interleukin 6 (IL-6), cyclooxygenase 2 (COX 2), and tumor necrosis factor-alpha (TNF α), and up-regulate antioxidant gene expression (superoxide dismutase and catalase). The use of gallic acid as natural antioxidants can be promising in ameliorating liver diseases.

16.
Curr Res Insect Sci ; 1: 100014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36003598

RESUMO

Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.

17.
J Adv Res ; 28: 77-85, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33364047

RESUMO

INTRODUCTION: Inflammatory Breast Cancer (IBC) is the most aggressive form of breast carcinoma characterized by rapid onset of inflammatory signs and its molecular fingerprint has not yet been elucidated. OBJECTIVES: The objective of this study was to detect both gene expression levels and alternate RNA splice variants specific for IBC. METHODS: W e performed splice-sensitive array profiling using Affymetrix Exon Array and quantitative RT-PCR analyses in 177 IBC compared to 183 non-IBC. We also assessed the prognostic value of the identified candidate genes and splice variants. RESULTS: A 5-splice signature (HSPA8, RPL10, RPL4, DIDO1 and EVL) was able to distinguish IBC from non-IBC tumors (p<10-7). This splice signature was associated with poor metastasis-free survival in hormone receptor-negative non-IBC (p=0.02), but had no prognostic value in IBC. PAM analysis of dysregulated genes in IBC compared to non-IBC identified a 10-gene signature highly predictive of IBC phenotype and conferring a poor prognosis in non-IBC. The genes most commonly upregulated in IBC were 3 hemoglobin genes able to reliably discriminate IBC from non-IBC (p<10-4). Hb protein expression in epithelial breast tumor cells was confirmed by immunohistochemistry. CONCLUSION: IBC has a specific spliced transcript profile and is characterized by hemoglobin gene overexpression that should be investigated in further functional studies.

18.
JACC Basic Transl Sci ; 6(1): 1-8, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33102950

RESUMO

Many efforts to design and screen therapeutics for the current severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic have focused on inhibiting viral host cell entry by disrupting angiotensin-converting enzyme-2 (ACE2) binding with the SARS-CoV-2 spike protein. This work focuses on the potential to inhibit SARS-CoV-2 entry through a hypothesized α5ß1 integrin-based mechanism and indicates that inhibiting the spike protein interaction with α5ß1 integrin (+/- ACE2) and the interaction between α5ß1 integrin and ACE2 using a novel molecule (ATN-161) represents a promising approach to treat coronavirus disease-19.

19.
Front Plant Sci ; 12: 798858, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35116050

RESUMO

Tomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus (Geminiviridae family), causing severe yield and economic losses in cucurbit crops. A major resistance locus was identified in the wild melon accession WM-7 (Cucumis melo kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance. Transcriptomes of the resistant WM-7 genotype and the susceptible cultivar Piñonet Piel de Sapo (PS) (C. melo ibericus group) in ToLCNDV and mock inoculated plants were compared at four time points during infection (0, 3, 6, and 12 days post inoculation). Different gene expression patterns were observed over time in the resistant and susceptible genotypes in comparison to their respective controls. Differentially expressed genes (DEGs) in ToLCNDV-infected plants were classified using gene ontology (GO) terms, and genes of the categories transcription, DNA replication, and helicase activity were downregulated in WM-7 but upregulated in PS, suggesting that reduced activity of these functions reduces ToLCNDV replication and intercellular spread and thereby contributes to resistance. DEGs involved in the jasmonic acid signaling pathway, photosynthesis, RNA silencing, transmembrane, and sugar transporters entail adverse consequences for systemic infection in the resistant genotype, and lead to susceptibility in PS. The expression levels of selected candidate genes were validated by qRT-PCR to corroborate their differential expression upon ToLCNDV infection in resistant and susceptible melon. Furthermore, single nucleotide polymorphism (SNPs) with an effect on structural functionality of DEGs linked to the main QTLs for ToLCNDV resistance have been identified. The obtained results pinpoint cellular functions and candidate genes that are differentially expressed in a resistant and susceptible melon line in response to ToLCNDV, an information of great relevance for breeding ToLCNDV-resistant melon cultivars.

20.
Diagnostics (Basel) ; 10(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114169

RESUMO

The diagnosis and prognosis of tuberculosis remains challenging and necessitates the development of a new test that can accurately diagnose and monitor treatment responses. In this regard, miRNA is becoming a potential diagnostic and prognostic biomarker which differentiates treatment respondents from non-respondents for various non-infectious and infectious diseases, including tuberculosis. The concentration of miRNAs varies based on cell type, disease, and site of infection, implicating that selection of an optimal reference gene is crucial, and determines the quantification of transcript level and biological interpretation of the data. Thus, the study evaluated the stability and expression level of five candidate miRNAs (let-7i-5p, let-7a-5p, miRNA-16-5p, miRNA-22-3p and miRNA-93-5p), including U6 Small Nuclear RNA (RNU6B) to normalize circulating miRNAs in the plasma of 68 participants (26 healthy controls, 23 latent, and 19 pulmonary tuberculosis infected) recruited from four health centers and three hospitals in Addis Ababa, Ethiopia. The expression levels of miRNAs isolated from plasma of culture confirmed newly diagnosed pulmonary tuberculosis patients were compared with latently infected and non-infected healthy controls. The qPCR data were analyzed using four independent statistical tools: Best Keeper, Genorm, Normfinder and comparative delta-Ct methods, and the data showed that miRNA-22-3p and miRNA-93-5p were suitable plasma reference miRNAs in a tuberculosis study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...