RESUMO
CYP2A6 is a human enzyme responsible for the metabolic elimination of nicotine, and it is also involved in the activation of procarcinogenic nitrosamines, especially those present in tobacco smoke. Several investigations have reported that reducing this enzyme activity may contribute to anti-smoking therapy as well as reducing the risk of promutagens in the body. For these reasons, several authors investigate selective inhibitors molecules toward this enzyme. The aim of this study was to evaluate the interactions between a set of organosulfur compounds and the CYP2A6 enzyme by a quantitative structure-activity relationship (QSAR) analysis. The present work provides a better understanding of the mechanisms involved, with the final goal of providing information for the future design of CYP2A6 inhibitors based on dietary compounds. The reported activity data were modeled by means of multiple regression analysis (MLR) and partial least-squares (PLS) techniques. The results indicate that hydrophobic and steric factors govern the union, while electronic factors are strongly involved in the case of monosulfides.
RESUMO
BACKGROUND: We have developed a quantitative structure-activity relationship (QSAR) model for predicting the larvicidal activity of 60 plant-derived molecules against Aedes aegypti L. (Diptera: Culicidae), a vector of several diseases such as dengue, yellow fever, chikungunya and Zika. The balanced subsets method (BSM) based on k-means cluster analysis (k-MCA) was employed to split the data set. The replacement method (RM) variable subset selection technique coupled with multivariable linear regression (MLR) proved to be successful for exploring 18 326 molecular descriptors and fingerprints calculated with PaDEL, Mold2 and EPI Suite open-source softwares. RESULTS: A robust QSAR model (Rtrain2=0.84, Strain = 0.20 and Rtest2=0.92, Stest = 0.23) involving five non-conformational descriptors was established. The model was validated and tested through the use of an external test set of compounds, the leave-one-out (LOO) and leave-more-out (LMO) cross-validation methods, Y-randomization and applicability domain (AD) analysis. CONCLUSION: The QSAR model surpasses previously published models based on geometrical descriptors, thereby representing a suitable tool for predicting larvicidal activity against the vector A. aegypti using a conformation-independent approach. © 2018 Society of Chemical Industry.