RESUMO
Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy.
Assuntos
Antineoplásicos , Neoplasias da Mama , Naftoquinonas , Humanos , Naftoquinonas/farmacologia , Naftoquinonas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Quinolonas/farmacologia , Quinolonas/química , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Doxorrubicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacosRESUMO
We identified a chromosomal qnrB19 gene within a transposon in a colistin-resistant Escherichia coli strain isolated from the stool sample of an Ecuadorian resident. This finding suggests a more stable acquisition of quinolone resistance on chromosomes than that on plasmids and the potential for propagation to other DNA structures.
RESUMO
Introdução: As quinolonas, amplamente usadas na prática clínica, correspondem à segunda causa de reações de hipersensibilidade aos antibióticos. Reações às quinolonas (RQ) são um desafio para o alergista, pois ocorrem por mecanismos IgE mediados, mas também por uma via não imunológica, o receptor MRGPRX2. Objetivo: Este trabalho avalia a reatividade cutânea de pessoas sem alergia ao ciprofloxacino em diversas concentrações. Metodologia: Foram realizados prick tests (PT) e testes intradérmicos de leitura imediata (ID) com ciprofloxacino em voluntários atendidos em um ambulatório de serviço terciário. No PT, foram usadas concentrações de 2 mg/mL (solução mãe), 1:10 e 1:50. No ID, 1:10, 1:50, 1:100 e 1:500. Resultados: Foram incluídos 31 indivíduos sem histórico de RQ. A média de idade foi de 40,5 anos, sendo 74,1% do gênero feminino. Doenças atópicas foram encontradas em 48,4% dos participantes, 100% destes com rinite alérgica, 20% com conjuntivite alérgica, 13,3% com asma, e 13,3% com dermatite atópica. Uso prévio de quinolonas foi relatado por 45,2% dos indivíduos. O PT puro e 1:10 foi positivo em 25,8% e 6,5%, respectivamente; na concentração 1:50 não mostrou positividade. O ID 1:10, 1:50 e 1:100 foi positivo em 96,8%, 45,2% e 6,5%, respectivamente, mas foi negativo na diluição 1:500. Nos que já usaram quinolonas, o PT puro e 1:50 foram positivos em 28,6% e 14,3% dos participantes, respectivamente, versus 25% e 0% nos que não usaram. O ID entre os indivíduos que já usaram foi positivo em 100% na diluição 1:10, 57,1% na 1:50, e 14,3% na 1:100. Entre os que não usaram, 93,7% na diluição 1:10, 37,6% na 1:50, e 0% na 1:100. Nos atópicos, o PT foi positivo em 26,7% e 13,3% na concentração mãe e 1:10; e negativo em 1:50. Nos participantes não atópicos, observou-se positividade de 25% no PT com a solução mãe e testes negativos nas demais diluições. O ID com as soluções 1:10, 1:50 e 1:100 foi positivo em 100%, 46,7% e 6,7% dos atópicos, e 93,7%, 43,7%, 6,3% nos não atópicos, respectivamente. Conclusão: O ciprofloxacino apresenta reatividade cutânea através de vias imunológicas e pelo MRGPRX2, sendo recomendada a realização de testes cutâneos em concentrações igual ou menores de 0,02 mg/ mL para investigação de reações de hipersensibilidade imediata, pois essas concentrações apresentam boa especificidade.
Introduction: Quinolones, widely used in clinical practice, are the second leading cause of antibiotic hypersensitivity. Hypersensitivity to quinolone poses a challenge for allergists, as it occurs through immunoglobulin E (IgE)-mediated mechanisms as well as nonimmunologic ones (specifically the MRGPRX2 receptor). Objective: To assess cutaneous hypersensitivity to ciprofloxacin at different concentrations. Methodology: Skin prick test (SPT) and immediate-reading intradermal test (IDT) with ciprofloxacin were performed on volunteers treated at a tertiary outpatient clinic. Concentrations of 2 mg/mL (main solution), 1:10, and 1:50 were used for the SPT, and concentrations of 1:10, 1:50, 1:100, and 1:500 were used for the IDT. Results: Thirty-one individuals with no history of hypersensitivity to quinolone were included, of whom 74.1% were women. Mean patient age was 40.5 years. Atopic diseases were found in 48.4% of participants, of whom 100% had allergic rhinitis, 20% had allergic conjunctivitis, 13.3% had asthma, and 13.3% had atopic dermatitis. Previous quinolone use was reported by 45.2%. SPT performed with the main solution and 1:10 dilution was positive in 25.8% and 6.5% of cases, respectively, whereas SPT with 1:50 dilution was negative in all cases. IDT performed with 1:10, 1:50, and 1:100 dilutions was positive in 96.8%, 45.2%, and 6.5% of cases, respectively, but negative with 1:500. Among the individuals who had used quinolones, SPT with main solution and 1:50 dilution was positive in 28.6% and 14.3% of cases, respectively, compared with 25% and 0% in those who had not used quinolones. Among those who had used quinolones, IDT results were positive in 100% at 1:10, 57.1% at 1:50, and 14.3% at 1:100. Among those who had not used quinolones, IDT results were positive in 93.7% at 1:10, 37.6% at 1:50, and 0% at 1:100. In atopic individuals, SPT was positive in 26.7% with the main solution and 1:10 dilution, and negative with 1:50. Among nonatopic individuals, 25% had a positive SPT with the main solution, and the remaining individuals were negative. IDT results with 1:10, 1:50, and 1:100 dilutions were positive, respectively, in 100%, 46.7%, and 6.7% of atopic individuals and in 93.7%, 43.7%, and 6.3% of nonatopic individuals. Conclusion: Ciprofloxacin triggers cutaneous hypersensitivity via immunologic mechanisms and the MRGPRX2 receptor. It is recommended that skin tests be performed at a dilution of 1:100 or greater to investigate immediate hypersensitivity.
Assuntos
Humanos , Adulto , Pessoa de Meia-Idade , IdosoRESUMO
Quinolone resistance has been largely related to the presence of specific point mutations in chromosomal targets, with an accessory role of impaired uptake and enhanced pump-out. Meanwhile the relevance of transferable mechanisms of resistance able to protect the target of pump-out or inactivate quinolones has been increasingly reported since 1998. Nevertheless, bacteria have other strategies and mechanisms allowing them to survive and even proliferate in the presence of quinolones, which might be qualified as resistance or resilience mechanisms. These include decreasing levels of quinolone target production, transient amoeba protection, benthonic lifestyle, nutrient-independent slow growth, activation of stringent response, inactivation or degradation of quinolones as well as apparently unrelated or forgotten chromosomal mutations. These mechanisms have been largely overlooked, either because of the use of classical approaches to antibiotic resistance determination or due to the low increase in final minimum inhibitory concentration levels. This article is devoted to a review of a series of these mechanisms.
RESUMO
Pluralibacter gergoviae is a member of the Enterobacteriaceae family that has been reported sporadically. Although P. gergoviae strains exhibiting multidrug-resistant profiles have been identified an in-depth genomic analysis focusing on antimicrobial resistance (AMR) has been lacking, and was therefore performed in this study. Forty-eight P. gergoviae strains, isolated from humans, animals, foods, and the environment during 1970-2023, were analyzed. A large number of single-nucleotide polymorphisms were found, indicating a highly diverse population. Whilst P. gergoviae strains were found to be circulating at the One Health interface, only human and environmental strains exhibited multidrug resistance genotypes. Sixty-one different antimicrobial resistance genes (ARGs) were identified, highlighting genes encoding mobile colistin resistance, carbapenemases, and extended-spectrum ß-lactamases. Worryingly, the co-occurrence of mcr-9.1, blaKPC-2, blaCTX-M-9, and blaSHV-12, as well as mcr-10.1, blaNDM-5, and blaSHV-7, was detected. Plasmid sequences were identified as carrying clinically important ARGs, evidencing IncX3 plasmids harboring blaKPC-2, blaNDM-5, or blaSHV-12 genes. Virulence genotyping underlined P. gergoviae as being a low-virulence species. In this regard, P. gergoviae is emerging as a new multidrug-resistant species belonging to the Enterobacteriaceae family. Therefore, continuous epidemiological genomic surveillance of P. gergoviae is required.
RESUMO
Salmonella Isangi is an infrequent serovar that has recently been reported in several countries due to nosocomial infections. A considerable number of reports indicate Salmonella Isangi multidrug resistance, especially to cephalosporins, which could potentially pose a risk to public health worldwide. Genomic analysis is an excellent tool for monitoring the emergence of microorganisms and related factors. In this context, the aim of this study was to carry out a genomic analysis of Salmonella Isangi isolated from poultry in Brazil, and to compare it with the available genomes from the Pathogen Detection database and Sequence Read Archive. A total of 142 genomes isolated from 11 different countries were investigated. A broad distribution of extended-spectrum beta-lactamase (ESBL) genes was identified in the Salmonella Isangi genomes examined (blaCTX-M-15, blaCTX-M-2, blaDHA-1, blaNDM-1, blaOXA-10, blaOXA-1, blaOXA-48, blaSCO-1, blaSHV-5, blaTEM-131, blaTEM-1B), primarily in South Africa. Resistome analysis revealed predicted resistance to aminoglycoside, sulfonamide, macrolide, tetracycline, trimethoprim, phenicol, chloramphenicol, and quaternary ammonium. Additionally, PMQR (plasmid-mediated quinolone resistance) genes qnr19, qnrB1, and qnrS1 were identified, along with point mutations in the genes gyrAD87N, gyrAS83F, and gyrBS464F, which confer resistance to ciprofloxacin and nalidixic acid. With regard to plasmids, we identified 17 different incompatibility groups, including IncC, Col(pHAD28), IncHI2, IncHI2A, IncM2, ColpVC, Col(Ye4449), Col156, IncR, IncI1(Alpha), IncFIB (pTU3), Col(B5512), IncQ1, IncL, IncN, IncFIB(pHCM2), and IncFIB (pN55391). Phylogenetic analysis revealed five clusters grouped by sequence type and antimicrobial gene distribution. The study highlights the need for monitoring rare serovars that may become emergent due to multidrug resistance.
RESUMO
We characterized the distribution and diversity of antimicrobial-resistance Salmonella enterica isolated from a poultry production chain in Minas Gerais, Brazil, with special attention to ciprofloxacin and multidrug resistance (MDR). S. enterica (n = 96) of different serotypes and from different processing steps were subjected to broth dilution assay to estimate the minimum inhibitory concentration (MIC) for 12 antibiotics (8 classes) and screened using PCR for the presence of 17 antimicrobial-resistance genes. Isolates presented mainly resistance to ampicillin (11/96), and most presented intermediate resistance to ciprofloxacin (92/96). Roughly one-third (33/96) were resistant to streptomycin based on our interpretive criteria. Most strains resistant to streptomycin and ciprofloxacin were PCR-positive for aphA (51/96) and qnrB (94/96), respectively. Ciprofloxacin resistance was further investigated through high-resolution melting qPCR (HRM-qPCR) and sequencing of quinolone resistance-determining region (QRDR: gyrA, gyrB, parC, and parE). Minor differences were identified in melting temperatures (Tm), and a Thr57Sr mutation was observed in parC. MDR isolates harboring acrA and capable of expressing the AcrAB-TolC multidrug efflux pump were resistant to ethidium bromide at 0.4 mg/mL. The intermediate resistance to ciprofloxacin may be associated with qnrB, and the potential role of Thr57Ser mutation warrants further investigation. The high prevalence of antibiotic related genes and its association with the observed intermediary resistance to ciprofloxacin indicates the widespread of this hazard in the studied poultry production chain.
Assuntos
Anti-Infecciosos , Salmonella enterica , Animais , Ciprofloxacina/farmacologia , Salmonella enterica/genética , Brasil , Aves Domésticas , Prevalência , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Estreptomicina , Testes de Sensibilidade Microbiana , DNA Girase/genéticaRESUMO
The presence of crpP was established in 201 Pseudomonas aeruginosa isolates from 9 Peruvian hospitals. The 76.6% (154/201) of the isolates presented the crpP gene. Overall, 123/201 (61.2%) isolates were non-susceptible to ciprofloxacin. The prevalence of crpP-possessing P. aeruginosa in Peru is higher than in other geographical areas.
RESUMO
Prion Diseases or Transmissible Spongiform Encephalopathies are neurodegenerative conditions associated with a long incubation period and progressive clinical evolution, leading to death. Their pathogenesis is characterized by conformational changes of the cellular prion protein-PrPC-in its infectious isoform-PrPSc-which can form polymeric aggregates that precipitate in brain tissues. Currently, there are no effective treatments for these diseases. The 2,5-diamino-1,4-benzoquinone structure is associated with an anti-prion profile and, considering the biodynamic properties associated with 4-quinolones, in this work, 6-amino-4-quinolones derivatives and their respective benzoquinone dimeric hybrids were synthesized and had their bioactive profile evaluated through their ability to prevent prion conversion. Two hybrids, namely, 2,5-dichloro-3,6-bis((3-carboxy-1-pentyl-4-quinolone-6-yl)amino)-1,4-benzoquinone (8e) and 2,5-dichloro-3,6-bis((1-benzyl-3-carboxy-4-quinolone-6-yl)amino)-1,4-benzoquinone (8f), stood out for their prion conversion inhibition ability, affecting the fibrillation process in both the kinetics-with a shortening of the lag phase-and thermodynamics and their ability to inhibit the formation of protein aggregates without significant cytotoxicity at ten micromolar.
Assuntos
Doenças Priônicas , Príons , Quinolonas , Humanos , Proteínas Priônicas , Príons/química , Doenças Priônicas/metabolismo , Polímeros , Translocação Genética , Benzoquinonas/farmacologiaRESUMO
OBJECTIVES: In contrast to other qnr families, qnrVC has been reported mainly in Vibrio spp. and inserted in class 1 integrons. This study aimed to identify the variants of qnrVC genes detected in Klebsiella pneumoniae carbapenemase-2-producing Enterobacter and Klebsiella strains isolated from Brazilian coastal waters and the genetic contexts associated with their occurrence. METHODS: qnrVC variants were identified by Sanger sequencing. Stains were typified by pulsed-field gel electrophoresis. Antimicrobial susceptibility testing, conjugation assays, and whole genome sequencing (WGS) were applied to identify the strains' antimicrobial resistance profile, qnrVC and blaKPC-2 co-transference, and qnrVC genetic context. RESULTS: qnrVC1 was identified in 15 Enterobacter and 3 Klebsiella, and qnrVC4 in 2 Enterobacter strains. Pulsed-field gel electrophoresis revealed 12 clonal profiles of Enterobacter and one of Klebsiella. Strains were resistant to aminoglycosides, beta-lactams, fosfomycin, quinolones, and sulfamethoxazole-trimethoprim. Co-transference of qnrVC and blaKPC-2 were obtained from five representative Enterobacter strains, which showed resistance to ampicillin and amoxicillin-clavulanate, and reduced susceptibility to extended-spectrum cephalosporins, meropenem, and ciprofloxacin. WGS analysis from representative strains revealed one K. quasipneumoniae subsp. similipneumoniae, one E. soli, four E. kobei, and seven isolates belonging to Enterobacter Taxon 3. Long-read WGS showed qnrVC and blaKPC-2 were carried by the same replicon on Klebsiella and Enterobacter strains, and the qnrVC association with not previously described genetic environments composed of insertion sequences and truncated genes. These contexts occurred in small- and high-molecular-weight plasmids belonging to IncFII, IncP6, pKPC-CAV1321, and IncU groups. CONCLUSION: Our results suggest that the dissemination of qnrVC among Enterobacterales in Brazilian coastal waters is associated with several genetic recombination events.
Assuntos
Enterobacter , Klebsiella , Antibacterianos/farmacologia , Enterobacter/genética , Klebsiella/genética , Klebsiella pneumoniae/genéticaRESUMO
The increasing prevalence of multi-drug resistant (MDR) Escherichia coli in distinct ecological niches, comprising water sources and food-producing animals, such as fish species, has been widely reported. In the present study, quinolone-resistant E. coli isolates from Arapirama gigas, a major fish species in the Brazilian Amazon rivers and fish farms, were characterized regarding their antimicrobial susceptibility, virulence, and genetic diversity. A total of forty (40) specimens of A. gigas, including 20 farmed and 20 wild fish, were included. Thirty-four quinolone-resistant E. coli isolates were phenotypically tested by broth microdilution, while resistance and virulence genes were detected by PCR. Molecular epidemiology and genetic relatedness were analyzed by MLST and PFGE typing. The majority of isolates were classified as MDR and detected harboring blaCTX-M, qnrA and qnrB genes. Enterotoxigenic E. coli pathotype (ETEC) isolates were presented in low prevalence among farmed animals. MLST and PFGE genotyping revealed a wide genetic background, including the detection of internationally spread clones. The obtained data point out A. gigas as a reservoir in Brazilian Amazon aquatic ecosystems and warns of the interference of AMR strains in wildlife and environmental matrices.
RESUMO
In view of growing concerns, in a One Health context, regarding the transport and dissemination of pathogenic microorganisms among seabirds and other vertebrate animals, including humans, the aim of this study was to identify Salmonella spp. in stranded and non-stranded resident and migratory wild seabirds from the Brazilian coast. Antimicrobial susceptibility and molecular profiles, quinolone resistance genes and antigenic characterization of the isolates were also carried out. Fresh faeces and cloacal swabs were obtained totaling 122 seabirds sampled throughout different Brazilian coast regions. At the laboratory, sample culturing, Salmonella spp. isolation and biochemical identification were performed, followed by antigenic profile identification by serum agglutination, susceptibility profile characterization by the agar disc diffusion technique, detection of quinolone resistance genes (qnrA, qnrB, qnrS) using the multiplex polymerase chain reaction technique (multiplex PCR) and, finally, isolates profiles identification by pulsed field gel electrophoresis (PFGE). Salmonella enterica subsp. enterica was identified in 7% of the studied birds, comprising three different serovars: Panama (63 %), Typhimurium (25 %) and Newport (13 %). The most important findings reported herein are the first description of Salmonella panama in seabirds and the totality of isolates being resistant (or intermediate) to at least one tested antimicrobial, with emphasis on quinolone resistance. The molecular results suggest that the observed resistance cannot be explained by the presence of plasmid-mediated quinolone resistance genes. The PFGE suggests that the Panama and Newport profiles detected herein are not yet widespread in Brazil, unlike Typhimurium, which is already well distributed throughout the country. Considering this finding, we suggest that seabirds are an important link in the epidemiological chain of this serovar. The monitoring of these bacteria in seabirds, as well as of their susceptibility profiles to antimicrobials, must be continuous, strengthening the role of these animals as environmental health indicators and sentinels.
Assuntos
Aves/microbiologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Salmonella , Animais , Antibacterianos/farmacologia , Brasil/epidemiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Eletroforese em Gel de Campo Pulsado/veterinária , Lindera/microbiologia , Testes de Sensibilidade Microbiana/veterinária , Salmonella/classificação , Salmonella/efeitos dos fármacos , Salmonella enterica , Salmonella typhimuriumRESUMO
Five new examples of 9,10-chloro(bromo)-7-amine-spiro[chromeno[4,3-b]quinoline-6,1'-cycloalkanes] - in which cycloalkanes = cyclopentane, cyclohexane, and cycloheptane - were synthesized at yields of 42-56%, using a sequential one-pot two-step cyclocondensation reaction of three different scaffolds of 2-aminobenzonitriles and the respective spiro[chroman-2,1'-cycloalkan]-4-ones, and using AlCl3 as the catalyst in a solvent-free method. Subsequently, the five new spirochromeno-quinolines and nine quinolines previously published by us (14 modified tacrine scaffolds) were subjected to AChE and BChE inhibitory activity evaluation. The molecule containing a spirocyclopentane derivative had the highest AChE and BChE inhibitory activity (IC50 = 3.60 and 4.40 µM, respectively), and in general, the non-halogenated compounds were better inhibitors of AChE and BChE than the halogenated molecules. However, the inhibitory potency of compounds 3a-n was weaker than that of tacrine. By molecular docking simulations, it was found that the size of the spirocarbocyclic moieties is inversely proportional to the inhibitory activity of the cholinesterases, probably because an increase in the size of the spirocyclic component sterically hindered the interaction of tacrine derivatives with the active site of tested cholinesterases. The findings obtained here may help in the design and development of new anticholinesterase drugs.
Assuntos
Inibidores da Colinesterase/farmacologia , Colinesterases/metabolismo , Cicloparafinas/farmacologia , Quinolinas/farmacologia , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Cicloparafinas/síntese química , Cicloparafinas/química , Relação Dose-Resposta a Droga , Electrophorus , Cavalos , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-AtividadeRESUMO
The goals of this work were to evaluate the effects produced by a hyperglycidic diet (HD) on Drosophila melanogaster and to verify the protective effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) on this model. Adult flies were divided into eight groups of 50 flies each: (1) RD, (regular diet) (2) RD + 4-PSQ (25 µM), (3) HD 5%, (4) HD 10%, (5) HD 30% (6) HD 5% + 4-PSQ (25 µM), (7) HD 10% + 4-PSQ (25 µM) and (8) HD 30% + 4-PSQ (25 µM). Flies were exposed to a diet containing sucrose and or 4-PSQ for ten days, according to each group. At the end of treatment survival rate, longevity, hatch rate, food intake, glucose and triglyceride levels, as well as, some markers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities, protein thiol (PSH) and non-protein levels (NPSH) and cell viability assays (Resazurin and MTT) were evaluated. It was observed that HD's consumption was associated with lower survival of the flies, lower longevity, and increased levels of glucose, triglycerides, TBARS and increased SOD activities and CAT activities. Treatment with 25 µM 4-PSQ increased the satiety of flies, increased survival, reduced glucose, triglyceride and TBARS levels, increased hatching, and normalized SOD and CAT activities. These results suggest that 25 µM 4-PSQ had a potential antioxidant effect and provided greater satiety by attenuating the effects of high HD consumption on this model.
Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus , Drosophila melanogaster , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Biomarcadores/metabolismo , Dieta , Feminino , MasculinoRESUMO
We investigated the phenotypic and molecular characteristics of Extended-Spectrum-ß-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates from four health-care institutions in Hermosillo, Sonora, Mexico. ESBL-producing isolates were collected from February to August 2016. The prevalence of ESBL-producing E. coli and K. pneumoniae was 11.9 and 8.7%, respectively. High dissemination of resistance to ciprofloxacin (88%), trimethoprim/sulfamethoxazole (72%) and aminoglycosides (59%) were detected, as well as susceptibility to meropenem, amikacin and tigecycline. The ESBL found variants were CTX-M-1 (88%) and CTX-M-9 (5%). The plasmid-mediated quinolone resistance (PMQR) gene aac(6´)-Ib-cr was identified in 62% of a representative sample, whereas the qnrB and qnrS genes were detected in 49% of the isolates. PFGE analyses detected many unrelated clones among the hospital or community isolates. A constant programme of epidemiological surveillance is recommended to understand the dynamics of bacterial resistance to both cephalosporin as well as the fluoroquinolone family of antibiotics.
Assuntos
Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/biossíntese , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/fisiologia , Escherichia coli/isolamento & purificação , Humanos , Klebsiella pneumoniae/isolamento & purificação , México , Testes de Sensibilidade Microbiana , FenótipoRESUMO
Structures are reported for two matched sets of substituted 4-styrylquinolines which were prepared by the formation of the heterocyclic ring in cyclocondensation reactions between 1-(2-aminophenyl)-3-arylprop-2-en-1-ones with 1,3-dicarbonyl compounds. (E)-3-Acetyl-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline, C21H19NO2, (I), (E)-3-acetyl-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline, C20H16BrNO, (II), and (E)-3-acetyl-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline, C21H16F3NO, (III), are isomorphous and in each structure the molecules are linked by a single C-H...O hydrogen bond to form C(6) chains. In (I), but not in (II) or (III), this is augmented by a C-H...π(arene) hydrogen bond to form a chain of rings; hence, (I)-(III) are not strictly isostructural. By contrast with (I)-(III), no two of ethyl (E)-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline-3-carboxylate, C22H21NO3, (IV), ethyl (E)-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline-3-carboxylate, C21H18BrNO2, (V), and ethyl (E)-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline-3-carboxylate, C22H18F3NO2, (VI), are isomorphous. The molecules of (IV) are linked by a single C-H...O hydrogen bond to form C(13) chains, but cyclic centrosymmetric dimers are formed in both (V) and (VI). The dimer in (V) contains a C-H...π(pyridyl) hydrogen bond, while that in (VI) contains two independent C-H...O hydrogen bonds. Comparisons are made with some related structures, and both the regiochemistry and the mechanism of the heterocyclic ring formation are discussed.
RESUMO
OBJECTIVES: This study aimed to evaluate the persistence of the plasmid-mediated quinolone resistance (PMQR) among uropathogenic Escherichia coli strains grown under or without exposure to subinhibitory concentrations of ciprofloxacin. Based on that, we evaluated the possible spontaneous loss or maintenance of PMQR and the possible appearance of compensatory mutations in gyrA and parC genes. METHODS: Three uropathogenic E. coli strains harbouring chromosomal mutations in the gyrA and/or parC genes coupled with qnrS1 or qnrB2 determinants carried by distinct plasmid sizes and incompatibility N groups (IncN/ST1, IncN/ST5) were evaluated using in vitro and in vivo assays. RESULTS: PMQRs remained stable in all strains throughout the generations evaluated, independently of exposure to ciprofloxacin in both in vivo and in vitro assays. Analysis of gyrA and parC genes after in vivo and in vitro assays revealed that no changes occurred in quinolone-resistance determining regions (QRDR). CONCLUSION: We demonstrated that IncN plasmids were persistent over 14 days in E. coli clinical strains independently of exposure to ciprofloxacin, as well as previous mutations in QRDR.
Assuntos
Proteínas de Escherichia coli , Escherichia coli Uropatogênica , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Escherichia coli Uropatogênica/genéticaRESUMO
[This corrects the article DOI: 10.3389/fmicb.2019.02503.].
RESUMO
4-Oxoquinoline derivatives constitute an important family of biologically important substances, associated with different bioactivities, which can be synthesized by different synthetic methods, allowing the design and preparation of libraries of substances with specific structural variations capable of modulating their pharmacological action. Over the last years, these substances have been extensively explored by the scientific community in efforts to develop new biologically active agents, with greater efficiency for the treatment of a variety of diseases. Viral infections have been one of the targets of these studies, although to a lesser extent than other diseases such as cancer and bacterial infections. Nevertheless, the literature provides examples that corroborate with the fact that these substances may act on different pharmacological targets in different viral pathogens. This review provides a compilation of some of the major studies published in recent years showing the discovery and/or development of new antiviral oxoquinoline agents, highlighting, whenever possible, their mechanisms of action.
Assuntos
4-Quinolonas/farmacologia , Antivirais/farmacologia , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , 4-Quinolonas/síntese química , 4-Quinolonas/química , Antivirais/síntese química , Antivirais/química , Desenvolvimento de Medicamentos , Humanos , Estrutura MolecularRESUMO
Pseudomonas aeruginosa is an opportunistic pathogen that produces several virulence factors such as lectin A, pyocyanin, elastase and rhamnolipids. These compounds are controlled transcriptionally by three quorum-sensing circuits, two based on the synthesis and detection of N-acyl-homoserine-lactone termed the Las and Rhl system and a third system named the Pseudomonas quinolone signal (PQS) system, which is responsible for generating 2-alkyl-4(1 h)-quinolones (AQs). The transcriptional regulator called PqsR binds to the promoter of pqsABCDE in the presence of PQS or HHQ creating a positive feedback-loop. PqsE, encoded in the operon for AQ synthesis, is a crucial protein for pyocyanin production, activating the Rhl system by a still not fully understood mechanism. In turn, the regulation of the PQS system is modulated by Las and Rhl systems, which act positively and negatively, respectively. This review focuses on the PQS system, from its discovery to its role in Pseudomonas pathogenesis, such as iron depletion and pyocyanin synthesis that involves the PqsE protein - an intriguing player of this system.