Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15505, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969692

RESUMO

The progression of optical materials and their associated applications necessitates a profound comprehension of their optical characteristics, with the Judd-Ofelt (JO) theory commonly employed for this purpose. However, the computation of JO parameters (Ω2, Ω4, Ω6) entails wide experimental and theoretical endeavors, rendering traditional calculations often impractical. To address these challenges, the correlations between JO parameters and the bulk matrix composition within a series of Rare-Earth ions doped sulfophosphate glass systems were explored in this research. In this regard, a novel soft computing technique named genetic expression programming (GEP) was employed to derive formulations for JO parameters and bulk matrix composition. The predictor variables integrated into the formulations consist of JO parameters. This investigation demonstrates the potential of GEP as a practical tool for defining functions and classifying important factors to predict JO parameters. Thus, precise characterization of such materials becomes crucial with minimal or no reliance on experimental work.

2.
J Magn Reson ; 365: 107731, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38996763

RESUMO

The electron spin echo envelope modulation (ESEEM) technique is a direct method to probe the nuclear spin coherences induced by electron spin transitions. Recently, this approach was used to study an isotopically pure Y2SiO5 crystal doped with 173Yb3+ ions, and the presence of the Fermi contact interaction was proposed to explain the frequency comb detected in the two-pulse ESEEM experiment [Solovarov N. K. et al. JETP Letters 115 (6): 362-67]. Here we simulate the Fourier images of the ESEEM data. The numerical analysis shows that the modulation is mainly due to the nuclear spin coherences induced by the dipole-dipole interactions. However, the correlation between the experimental and simulated data is better when the super-hyperfine interactions of the nearby yttrium nuclei have an additional isotropic contribution. The analysis of the rescaled X-band ESEEM spectra shows that for the EPR transitions at magnetic fields > 100 mT, the main contribution to the modulation comes from the oscillations of the individual nuclei and the effect of interference between coherences originating from several nuclei is not strong. Further experiments to distinguish the sources of the echo modulation are discussed.

3.
Chemphyschem ; : e202400109, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887191

RESUMO

The paper describes an investigation of phase decomposition of apatite lattice doped with rare earth ions (cerium, samarium, and holmium) at temperatures ranging from 25 to 1200 ºC. The rare-earth ion-doped apatite minerals were synthesized using sol-gel method. In situ high-temperature powder X-ray diffraction (XRD) was used to observe phase changes and the lattice parameters were analyzed to ascertain the crystallographic transformations. The expansion coefficient of the compounds was determined, and it was found that the c-axis was the most expandable due to relatively weak chemical bonds along the c-crystallographic axis. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine the decomposition properties of the materials. Due to rare earth ion doping, the produced materials had slightly variable decomposition behaviour. The cerium and samarium ions were present in multiple oxidation states (Ce3+, Ce4+, Sm3+, Sm2+), whereas only Ho3+ ions were observed. Rare earth ion substitution affects tri-calcium phosphate proportion during decomposition by regulating concentrations of vacancies. X-ray photoelectron spectroscopy (XPS) analysis indicated that cerium and samarium ion-doped apatite yielded only 25% tricalcium phosphate during decomposition. This finding advances our understanding of apatite structures, with implications for various high-temperature processes like calcination, sintering, hydrothermal processing, and plasma spraying.

4.
Sci Rep ; 14(1): 13673, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871825

RESUMO

From the useless municipal solid waste (MSW) ashes, CeO2, Gd2O3 and CeO2 + Gd2O3 doped borosilicate glasses were organized via melting-quenching procedure. Various optical, structural, physical and radiation shielding parameters were examined towards the influence of 100 kGy of γ-radiation. UV-visible NIR spectra revealed UV peaks at 351, 348 and 370 nm corresponding to the trivalent states of Ce3+ and Gd3+ ions, while, photoluminescence (PL) spectra displayed asymmetric broad excitations of Ce3+ and Gd3+ ions due to 4f → 5d transitions, and emission intense bands at 412, 434, and 417 nm. CIE chromaticity shows that Gd3+ ions increase the luminescence of Ce3+. FTIR absorption bands revealed an overlapping between tetrahedral groups of silicate (SiO4), with trigonal (BO3) and tetrahedral (BO4) units of borate. The influence of 100 kGy obtains quite reduction in UV-visible NIR and PL peaks, large stability in FTIR and ESR spectra, and stability of thermal expansion coefficient (CTE) as well. The whole data revealed optical, structural and physical stability of glasses after irradiation besides an enhancement in microhardness owing to more structural compactness and high bonding connectivity. Radiation shielding parameters from Phy-X/PSD program showed higher values of mass (MAC) and linear attenuation coefficients (LAC), and effective atomic number (Zeff) in the order of; glass Ce+Gd > glass Ce > glass Gd. Ce + Gd doped glass revealed also the lowest half value layer (HVL) comparing to other shielding commercial concretes. The study recommends the beneficial and economical use of the useless MSW ash to produce CeO2 and/or Gd2O3 borosilicate glasses with hopeful radiation shielding features.

5.
Biomed Mater ; 19(4)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38740038

RESUMO

Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.


Assuntos
Antibacterianos , Biofilmes , Íons , Metais Terras Raras , Testes de Sensibilidade Microbiana , Plâncton , Pseudomonas aeruginosa , Metais Terras Raras/química , Metais Terras Raras/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Plâncton/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Staphylococcus aureus/efeitos dos fármacos , Animais , Norfloxacino/farmacologia , Norfloxacino/química
6.
ACS Nano ; 18(14): 9929-9941, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38533847

RESUMO

The use of trivalent erbium (Er3+), typically embedded as an atomic defect in the solid-state, has widespread adoption as a dopant in telecommunication devices and shows promise as a spin-based quantum memory for quantum communication. In particular, its natural telecom C-band optical transition and spin-photon interface make it an ideal candidate for integration into existing optical fiber networks without the need for quantum frequency conversion. However, successful scaling requires a host material with few intrinsic nuclear spins, compatibility with semiconductor foundry processes, and straightforward integration with silicon photonics. Here, we present Er-doped titanium dioxide (TiO2) thin film growth on silicon substrates using a foundry-scalable atomic layer deposition process with a wide range of doping controls over the Er concentration. Even though the as-grown films are amorphous after oxygen annealing, they exhibit relatively large crystalline grains, and the embedded Er ions exhibit the characteristic optical emission spectrum from anatase TiO2. Critically, this growth and annealing process maintains the low surface roughness required for nanophotonic integration. Finally, we interface Er ensembles with high quality factor Si nanophotonic cavities via evanescent coupling and demonstrate a large Purcell enhancement (≈300) of their optical lifetime. Our findings demonstrate a low-temperature, nondestructive, and substrate-independent process for integrating Er-doped materials with silicon photonics. At high doping densities this platform can enable integrated photonic components such as on-chip amplifiers and lasers, while dilute concentrations can realize single ion quantum memories.

7.
J Colloid Interface Sci ; 664: 128-135, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460378

RESUMO

Aqueous zinc-ion batteries (AZIBs) have become an ideal candidate for large-scale energy storage systems owing to their inherent safety and highly competitive capacity. However, severe dendrite growth and side reactions on the surface of zinc metal anodes lead to quick performance deterioration, seriously impeding the commercialization of AZIBs. In this work, a self-regulated zinc metal/electrolyte interface is constructed to solve these problems by incorporating the trivalent Gd3+ additive with a lower effective reduction potential into the aqueous ZnSO4 electrolyte. It is revealed that the inert Gd3+ ions preferentially adsorb on the active sites of the zinc anode, and the induced electrostatic shielding layer is beneficial to uniform Zn deposition. Meanwhile, the adsorbed Gd3+ ions act as a buffer interface to lower the direct contact of the zinc anode with water molecules, thereby suppressing the interfacial parasitic reaction. These features endow the Zn//Zn battery using 0.2 M Gd3+ ions with 2940 h of cycling life at 5 mA cm-2 and a cumulative plating capacity (CPC) of 6.2 Ah cm-2 at 40 mA cm-2. When assembling with a MnO2 cathode, the full cell using the modified electrolyte exhibits a high capacity of 268.9 mAh/g at 0.2 A/g, as well as improved rate capability and cycle stability. The results suggest the great potential of a rare earth ion additive in reinforcing Zn metal anodes for developing practical AZIBs.

8.
ACS Nano ; 18(6): 4911-4921, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289164

RESUMO

When navigated by the available energy of a system, often provided in the form of heat, physical processes or chemical reactions fleet on a free-energy landscape, thus changing the structure. In in situ transmission electron microscopy (TEM), where material structures are measured and manipulated inside the microscope while being subjected to external stimuli such as electrical fields, laser irradiation, or mechanical stress, it is necessary to precisely determine the local temperature of the specimen to provide a comprehensive understanding of material behavior and to establish the relationship among energy, structure, and properties at the nanoscale. Here, we propose using cathodoluminescence (CL) spectroscopy in TEM for in situ measurement of the local temperature. Gadolinium oxide particles doped with emissive europium ions present an opportunity to utilize them as a temperature probe in CL measurements via a ratiometric approach. We show the thermometric performance of the probe and demonstrate a precision of ±5 K in the temperature range from 113 to 323 K with the spatial resolution limited by the size of the particles, which surpasses other methods for temperature determination. With the CL-based thermometry, we further demonstrate measuring local temperature under laser irradiation.

9.
Micromachines (Basel) ; 14(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004935

RESUMO

This study introduces a novel method for producing Ag nanoclusters (NCs) within GeO2-PbO glasses doped with Tm3+ ions. Sample preparation involved the melt-quenching method, employing adequate heat treatment to facilitate Ag NC formation. Absorption spectroscopy confirmed trivalent rare-earth ion incorporation. Ag NC identification and the amorphous structure were observed using transmission electron microscopy. A tunable visible emission from blue to the yellow region was observed. The energy transfer mechanism from Ag NCs to Tm3+ ions was demonstrated by enhanced 800 nm emission under 380 and 400 nm excitations, mainly for samples with a higher concentration of Ag NCs; moreover, the long lifetime decrease of Ag NCs at 600 nm (excited at 380 and 400 nm) and the lifetime increase of Tm3+ ions at 800 nm (excitation of 405 nm) corroborated the energy transfer between those species. Therefore, we attribute this energy transfer mechanism to the decay processes from S1→T1 and T1→S0 levels of Ag NCs to the 3H4 level of Tm3+ ions serving as the primary path of energy transfer in this system. GeO2-PbO glasses demonstrated potential as materials to host Ag NCs with applications for photonics as solar cell coatings, wideband light sources, and continuous-wave tunable lasers in the visible spectrum, among others.

10.
Sci Bull (Beijing) ; 68(23): 2973-2981, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37798179

RESUMO

Nature-derived silk fibers possess excellent biocompatibility, sustainability, and mechanical properties, yet producing strong and tough silk fibers in a facile and large-scale manner remains a significant challenge. Herein, we report a simple method for preparing strong and tough silk fibers by feeding silkworms rare earth ion-modified diets. The resulting silk fibers exhibit significantly increased tensile strength and toughness, with average values of 0.85 ± 0.07 GPa and 156 ± 13 MJ m-3, respectively, and maximum values of 0.97 ± 0.04 GPa and 188 ± 19 MJ m-3, approaching those of spider dragline silk. Our findings suggest that the incorporation of rare earth ions (La3+ or Eu3+) into the silk fibers contributes to this enhancement. Structure analysis reveals a reduction in content and an improvement in orientation of ß-sheet nanocrystals in silk fibers. X-ray photoelectron spectroscopy analysis confirms the chemical interaction between rare earth ions with ß-sheet nanocrystals. The structural evolution and chemical interactions lead to the simultaneous enhancement in both strength and toughness. This work presents a simple, scalable, and effective strategy for producing ultra-strong and tough silk fibers with potential applications in areas requiring super structural materials, such as personal protection and aerospace.


Assuntos
Bombyx , Seda , Animais , Seda/química , Bombyx/metabolismo , Resistência à Tração , Íons/metabolismo , Dieta
11.
Luminescence ; 38(12): 2034-2047, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37675584

RESUMO

In this article, photoluminescence (PL) and thermoluminescence (TL) properties of ZrO2 , ZrO2 :Dy3+ , ZrO2 :Dy3+ -Gd3+ , ZrO2 :Dy3+ -Yb3+ , ZrO2 :Dy3+ -Er3+ , and ZrO2 :Dy3+ -Sm3+ phosphors synthesized by the Pechini method were investigated. The crystal structure, thermal properties, morphology, PL and TL properties were investigated using X-ray powder diffraction (XRD), differential thermal analysis/thermogravimetric analysis (DTA/TGA), scanning electron microscopy (SEM), PL and TL, respectively. The room temperature emission bands corresponding to 4 F9/2  â†’ 6 HJ (J = 9/2, 11/2, 13/2 and 15/2) transitions of Dy3+ ions were measured. The phosphors were analysed using Tm -TSTOP , variable dose, and computerized glow curve fitting methods. Reusability, dose-response, and fading characteristics were investigated. The phosphors have a natural TL emission that vanished by heating treatment. Moreover, new peaks with similar properties to the natural emissions were observed after high-dose irradiation and long-term fading experiments. The glow curves of the phosphors have 13 individual peaks and many low- and high-temperature satellite peaks. The origin of the peaks is ZrO2 host material and doping with rare-earth ions (Gd3+ , Dy3+ , Yb3+ , Er3+ and Sm3+ ) does not lead to a new glow peak. The dopants cause drastic changes in individual peak intensities of ZrO2 .The initial fading rates of all the phosphors are relatively fast, but they slow down as time goes on.


Assuntos
Luminescência , Metais Terras Raras , Metais Terras Raras/química , Difração de Raios X , Microscopia Eletrônica de Varredura , Íons
12.
Mikrochim Acta ; 190(9): 354, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587349

RESUMO

Curcumin (Cur) possesses diverse biological and pharmacologic effects. It is widely used as a food additive and therapeutic medicine. A study to determine a sensitive detection method for Cur is necessary and meaningful. In this work, double rare earth ions co-doped fluorescent coordination polymer nanoparticles (CPNPs) were developed for the Cur detection. The CPNPs were synthesized by using adenosine monophosphate (AMP) as bridge ligands via coordination self-assembly with Ce3+ and Tb3+. The AMP-Ce/Tb CPNPs exhibited the characteristic green fluorescence of Tb3+ and had high luminescence efficiency. Under the optimal conditions, the fluorescence intensity of AMP-Ce/Tb CPNPs could be significantly quenched by Cur. The fluorescence quenching extent at λex/λem of 300 nm/544 nm showed a good linear relationship with the Cur concentration in the range of 10 to 1000 nM. The detection limit was as low as 8.0 nM (S/N = 3). This method was successfully applied to the determination of Cur in real samples with satisfactory results. The luminescence mechanism of AMP-Ce/Tb CPNPs and the fluorescence quenching mechanism of the CPNPs by Cur were both examined.


Assuntos
Curcumina , Nanopartículas , Corantes , Íons , Polímeros , Monofosfato de Adenosina
13.
Adv Sci (Weinh) ; 10(20): e2207571, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37114798

RESUMO

Most lead-free halide double perovskite materials display low photoluminescence quantum yield (PLQY) due to the indirect bandgap or forbidden transition. Doping is an effective strategy to tailor the optical properties of materials. Herein, efficient blue-emitting Sb3+ -doped Cs2 NaInCl6 nanocrystals (NCs) are selected as host, rare-earth (RE) ions (Sm3+ , Eu3+ , Tb3+ , and Dy3+ ) are incorporated into the host, and excellent PLQY of 80.1% is obtained. Femtosecond transient absorption measurement found that RE ions not only served as the activator ions but also filled the deep vacancy defects. Anti-counterfeiting, optical thermometry, and white-light-emitting diodes (WLEDs) are exhibited using these RE ions-doped halide double perovskite NCs. For the optical thermometry based on Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs, the maximum relative sensitivity is 0.753% K-1 , which is higher than those of most temperature-sensing materials. Moreover, the WLED fabricated by Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs@PMMA displays CIE color coordinates of (0.30, 0.28), a luminous efficiency of 37.5 lm W-1 , a CCT of 8035 K, and a CRI over 80, which indicate that Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs are promising single-component white-light-emitting phosphors for next-generation lighting and display technologies.

14.
J Magn Reson ; 351: 107427, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37087862

RESUMO

A simple technique for observing optically stimulated electron paramagnetic resonance (OSEPR) is proposed and investigated. The versatility and information content of the described technique is demonstrated by the example of the OSEPR spectra of systems that are unpopular for this type of spectroscopy: a crystal with rare-earth ions Nd3+ and a doped semiconductor GaAs. In addition, the OSEPR spectrum of atomic cesium is presented, in which an optical nonlinearity is observed that makes it possible to estimate the Rabi frequency for the relevant optical transition. The effects observed in the described experiments (switching of peaks to dips, light-induced splitting of the OSEPR lines, and the appearance of a spectral feature at the double-Larmor frequency) are interpreted using the model proposed in the theoretical part of the work. The suggested interpretation shows the possibility of using the described OSEPR technique to estimate not only 'magnetic' parameters of the model Hamiltonian (g-factors, spin relaxation times), but also the Rabi frequencies characterizing optical transitions.

15.
ACS Appl Mater Interfaces ; 15(2): 3274-3286, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36608312

RESUMO

Ytterbium-doped LiYF4 (Yb:YLF) is a commonly used material for laser applications, as a photon upconversion medium, and for optical refrigeration. As nanocrystals (NCs), the material is also of interest for biological and physical applications. Unfortunately, as with most phosphors, with the reduction in size comes a large reduction of the photoluminescence quantum yield (PLQY), which is typically associated with an increase in surface-related PL quenching. Here, we report the synthesis of bipyramidal Yb:YLF NCs with a short axis of ∼60 nm. We systematically study and remove all sources of PL quenching in these NCs. By chemically removing all traces of water from the reaction mixture, we obtain NCs that exhibit a near-unity PLQY for an Yb3+ concentration below 20%. At higher Yb3+ concentrations, efficient concentration quenching occurs. The surface PL quenching is mitigated by growing an undoped YLF shell around the NC core, resulting in near-unity PLQY values even for fully Yb3+-based LiYbF4 cores. This unambiguously shows that the only remaining quenching sites in core-only Yb:YLF NCs reside on the surface and that concentration quenching is due to energy transfer to the surface. Monte Carlo simulations can reproduce the concentration dependence of the PLQY. Surprisingly, Förster resonance energy transfer does not give satisfactory agreement with the experimental data, whereas nearest-neighbor energy transfer does. This work demonstrates that Yb3+-based nanophosphors can be synthesized with a quality close to that of bulk single crystals. The high Yb3+ concentration in the LiYbF4/LiYF4 core/shell nanocrystals increases the weak Yb3+ absorption, making these materials highly promising for fundamental studies and increasing their effectiveness in bioapplications and optical refrigeration.

16.
Adv Mater ; 35(8): e2206741, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36303536

RESUMO

Scintillator-based X-ray imaging has attracted great attention from industrial quality inspection and security to medical diagnostics. Herein, a series of lanthanide(III)-Cu4 I4 heterometallic organic frameworks (Ln-Cu4 I4 MOFs)-based X-ray scintillators are developed by rationally assembling X-ray absorption centers ([Cu4 I4 ] clusters) and luminescent chromophores (Ln(III) ions) in a specific manner. Under X-ray irradiation, the heavy inorganic units ([Cu4 I4 ] clusters) absorb the X-ray energy to populate triplet excitons via halide-to-ligand charge transfer (XLCT) combined with the metal-to-ligand charge-transfer (MLCT) state (defined as the X/MLCT state), and then the 3 X/MLCT excited state sensitizes Tb3+ for intense X-ray-excited luminescence via excitation energy transfer. The obtained Tb-Cu4 I4 MOF scintillators exhibit high resistance to humidity and radiation, excellent linear response to X-ray dose rate, and high X-ray relative light yield of 29 379 ± 3000 photons MeV-1 . The relative light yield of Tb-Cu4 I4 MOFs is ≈3 times higher than that of the control Tb(III) complex. X-ray imaging tests show that the Tb-Cu4 I4 MOFs-based flexible scintillator film exhibits a high spatial resolution of 12.6 lp mm-1 . These findings not only provide a promising design strategy to develop lanthanide-MOF-based scintillators with excellent scintillation performance, but also exhibit high-resolution X-ray imaging for biological specimens and electronic chips.

17.
ACS Appl Mater Interfaces ; 14(51): 57028-57036, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36519737

RESUMO

Due to the high transparency, high Verdet constant, as well as easy processing properties, rare-earth ion-doped glasses have demonstrated great potential in magneto-optical (MO) applications. However, the variation in the valence state of rare-earth ions (Tb3+ to Tb4+) resulted in the decreased effective concentration of the paramagnetic ions and thus degraded MO performance. Here, a strategy was proposed to inhibit the oxidation of Tb3+ into Tb4+ as well as improve the thermal stability by tuning the optical basicity of glass networks. Moreover, the depolymerization of the glass network was modulated to accommodate more Tb ions. Thus, a record high effective concentration (14.19 × 1021/cm3) of Tb ions in glass was achieved, generating a high Verdet constant of 113 rad/(T·m) at 650 nm. Lastly, the first application of MO glass for magnetic field sensors was demonstrated, achieving a sensitivity of 0.139 rad/T. We hope our work provides guidance for the fabrication of MO glass with high performance and thermal stability and could push MO glass one step further for magnetic sensing applications.

18.
Nanomaterials (Basel) ; 12(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500918

RESUMO

Plasmonic waveguides have been shown to be a promising approach to confine and transport electromagnetic energy beyond the diffraction limit. However, ohmic losses generally prevent their integration at micrometric or millimetric scales. Here, we present a gain-compensated plasmonic waveguide based on the integration of linear chains of Ag nanoparticles on an optically active Nd3+-doped solid-state gain medium. By means of dual confocal fluorescence microscopy, we demonstrate long-range optical energy propagation due to the near-field coupling between the plasmonic nanostructures and the Nd3+ ions. The subwavelength fluorescence guiding is monitored at distances of around 100 µm from the excitation source for two different emission ranges centered at around 900 nm and 1080 nm. In both cases, the guided fluorescence exhibits a strong polarization dependence, consistent with the polarization behavior of the plasmon resonance supported by the chain. The experimental results are interpreted through numerical simulations in quasi-infinite long chains, which corroborate the propagation features of the Ag nanoparticle chains at both excitation (λexc = 590 nm) and emission wavelengths. The obtained results exceed by an order of magnitude that of previous reports on electromagnetic energy transport using linear plasmonic chains. The work points out the potential of combining Ag nanoparticle chains with a small interparticle distance (~2 nm) with rare-earth-based optical gain media as ultra-long-range waveguides with extreme light confinement. The results offer new perspectives for the design of integrated hybrid plasmonic-photonic circuits based on rare-earth-activated solid-state platforms.

19.
Front Chem ; 10: 1028441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267653

RESUMO

Based on the mechanism of luminescence resonance energy transfer (LRET) and using a special single strand DNA as the recognition element, a portable paper-based sensor for the accurate detection of total heavy rare-earth ions (mainly Gd3+, Tb3+ and Dy3+) concentration was proposed. The RNA cleaving-DNAzyme should recognize rare-earth ions to cleave RNA on DNA duplexes linking UCNPs and AuNPs, causing UCNPs and AuNPs to approach each other, inducing LRET, which attenuated the green upconversion luminescence (UCL) triggered by the 980 nm laser. UCL was captured by a charge-coupled device (CCD) image sensor and processed with the red-green-blue (RGB) image to quantitatively analyze heavy rare-earth ions in the samples. In the range of 5-50 µmol·L-1, the sensor has good sensitivity, with the limit of detection of 1.26 µmol L-1.

20.
Nano Lett ; 22(16): 6530-6536, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939762

RESUMO

Isolated solid-state atomic defects with telecom optical transitions are ideal quantum photon emitters and spin qubits for applications in long-distance quantum communication networks. Prototypical telecom defects, such as erbium, suffer from poor photon emission rates, requiring photonic enhancement using resonant optical cavities. Moreover, many of the traditional hosts for erbium ions are not amenable to direct incorporation with existing integrated photonics platforms, limiting scalable fabrication of qubit-based devices. Here, we present a scalable approach toward CMOS-compatible telecom qubits by using erbium-doped titanium dioxide thin films grown atop silicon-on-insulator substrates. From this heterostructure, we have fabricated one-dimensional photonic crystal cavities demonstrating quality factors in excess of 5 × 104 and corresponding Purcell-enhanced optical emission rates of the erbium ensembles in excess of 200. This easily fabricated materials platform represents an important step toward realizing telecom quantum memories in a scalable qubit architecture compatible with mature silicon technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA