Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975739

RESUMO

The 2020/2021 epidemic in Europe of highly pathogenic avian influenza virus (HPAIV) of subtype H5 surpassed all previously recorded European outbreaks in size, genotype constellations and reassortment frequency and continued into 2022 and 2023. The causative 2.3.4.4b viral lineage proved to be highly proficient with respect to reassortment with cocirculating low pathogenic avian influenza viruses and seems to establish an endemic status in northern Europe. A specific HPAIV reassortant of the subtype H5N3 was detected almost exclusively in red knots (Calidris canutus islandica) in December 2020. It caused systemic and rapidly fatal disease leading to a singular and self-limiting mass mortality affecting about 3500 birds in the German Wadden Sea, roughly 1 % of the entire flyway population of islandica red knots. Phylogenetic analyses revealed that the H5N3 reassortant very likely had formed in red knots and remained confined to this species. While mechanisms of virus circulation in potential reservoir species, dynamics of spill-over and reassortment events and the roles of environmental virus sources remain to be identified, the year-round infection pressure poses severe threats to endangered avian species and prompts adaptation of habitat and species conservation practices.


Assuntos
Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Europa (Continente)/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Vírus Reordenados/genética , Surtos de Doenças/veterinária , Charadriiformes/virologia , Aves/virologia
2.
BMC Infect Dis ; 24(1): 550, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824508

RESUMO

BACKGROUND: Influenza A virus infections can occur in multiple species. Eurasian avian-like swine influenza A (H1N1) viruses (EAS-H1N1) are predominant in swine and occasionally infect humans. A Eurasian avian-like swine influenza A (H1N1) virus was isolated from a boy who was suffering from fever; this strain was designated A/Shandong-binzhou/01/2021 (H1N1). The aims of this study were to investigate the characteristics of this virus and to draw attention to the need for surveillance of influenza virus infection in swine and humans. METHODS: Throat-swab specimens were collected and subjected to real-time fluorescent quantitative polymerase chain reaction (RT‒PCR). Positive clinical specimens were inoculated onto Madin-Darby canine kidney (MDCK) cells to isolate the virus, which was confirmed by a haemagglutination assay. Then, whole-genome sequencing was carried out using an Illumina MiSeq platform, and phylogenetic analysis was performed with MEGA X software. RESULTS: RT‒PCR revealed that the throat-swab specimens were positive for EAS-H1N1, and the virus was subsequently successfully isolated from MDCK cells; this strain was named A/Shandong-binzhou/01/2021 (H1N1). Whole-genome sequencing and phylogenetic analysis revealed that A/Shandong-binzhou/01/2021 (H1N1) is a novel triple-reassortant EAS-H1N1 lineage that contains gene segments from EAS-H1N1 (HA and NA), triple-reassortant swine influenza H1N2 virus (NS) and A(H1N1) pdm09 viruses (PB2, PB1, PA, NP and MP). CONCLUSIONS: The isolation and analysis of the A/Shandong-binzhou/01/2021 (H1N1) virus provide further evidence that EAS-H1N1 poses a threat to human health, and greater attention should be given to the surveillance of influenza virus infections in swine and humans.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Filogenia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/classificação , China/epidemiologia , Humanos , Masculino , Animais , Influenza Humana/virologia , Influenza Humana/epidemiologia , Cães , Células Madin Darby de Rim Canino , Criança , Suínos , Sequenciamento Completo do Genoma , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/epidemiologia , Genoma Viral
3.
Viruses ; 16(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38932274

RESUMO

We identified a child coinfected with influenza B viruses of B/Yamagata and B/Victoria lineages, in whom we analyzed the occurrence of genetic reassortment. Plaque purification was performed using a throat swab specimen from a 9-year-old child, resulting in 34 well-isolated plaques. The genomic composition of eight gene segments (HA, NA, PB1, PB2, PA, NP, M, and NS genes) for each plaque was determined at the lineage level. Of the 34 plaques, 21 (61.8%) had B/Phuket/3073/2013 (B/Yamagata)-like sequences in all gene segments, while the other 13 (38.2%) were reassortants with B/Texas/02/2013 (B/Victoria)-like sequences in 1-5 of the 8 segments. The PB1 segment had the most B/Victoria lineage genes (23.5%; 8 of 34 plaques), while PB2 and PA had the least (2.9%; 1 of 34 plaques). Reassortants with B/Victoria lineage genes in 2-5 segments showed the same level of growth as viruses with B/Yamagata lineage genes in all segments. However, reassortants with B/Victoria lineage genes only in the NA, PB1, NP, or NS segments exhibited reduced or undetectable growth. We demonstrated that various gene reassortments occurred in a child. These results suggest that simultaneous outbreaks of two influenza B virus lineages increase genetic diversity and could promote the emergence of new epidemic strains.


Assuntos
Coinfecção , Vírus da Influenza B , Influenza Humana , Filogenia , Vírus Reordenados , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/classificação , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza B/classificação , Humanos , Criança , Influenza Humana/virologia , Coinfecção/virologia , Genoma Viral , Masculino , Proteínas Virais/genética
4.
Vet Res ; 55(1): 65, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773540

RESUMO

In 2020, a new genotype of swine H1N2 influenza virus (H1avN2-HA 1C.2.4) was identified in France. It rapidly spread within the pig population and supplanted the previously predominant H1avN1-HA 1C.2.1 virus. To characterize this new genotype which is genetically and antigenically distant from the other H1avNx viruses detected in France, an experimental study was conducted to compare the outcomes of H1avN2 and H1avN1 infections in pigs and evaluate the protection conferred by the only inactivated vaccine currently licensed in Europe containing an HA 1C (clade 1C.2.2) antigen. Infection with H1avN2 induced stronger clinical signs and earlier shedding than H1avN1. The neutralizing antibodies produced following H1avN2 infection were unable to neutralize H1avN1, and vice versa, whereas the cellular-mediated immunity cross-reacted. Vaccination slightly altered the impact of H1avN2 infection at the clinical level, but did not prevent shedding of infectious virus particles. It induced a cellular-mediated immune response towards H1avN2, but did not produce neutralizing antibodies against this virus. As in vaccinated animals, animals previously infected by H1avN1 developed a cross-reacting cellular immune response but no neutralizing antibodies against H1avN2. However, H1avN1 pre-infection induced a better protection against the H1avN2 infection than vaccination, probably due to higher levels of non-neutralizing antibodies and a mucosal immunity. Altogether, these results showed that the new H1avN2 genotype induced a severe respiratory infection and that the actual vaccine was less effective against this H1avN2-HA 1C.2.4 than against H1avN1-HA 1C.2.1, which may have contributed to the H1avN2 epizootic and dissemination in pig farms in France.


Assuntos
Genótipo , Vírus da Influenza A Subtipo H1N2 , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , França/epidemiologia , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/imunologia , Virulência , Anticorpos Neutralizantes/sangue , Imunidade Celular
5.
Virol J ; 21(1): 85, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600529

RESUMO

BACKGROUND: Avian influenza viruses (AIVs) constitute significant zoonotic pathogens encompassing a broad spectrum of subtypes. Notably, the H4 subtype of AIVs has a pronounced ability to shift hosts. The escalating prevalence of the H4 subtype heightens the concern for its zoonotic potential, signaling an urgent need for vigilance. METHODS: During the period from December 2021 to November 2023, we collected AIV-related environmental samples and assessed them using a comprehensive protocol that included nucleic acid testing, gene sequencing, isolation culture, and resequencing. RESULTS: In this study, a total of 934 environmental samples were assessed, revealing a remarkably high detection rate (43.66%, 289/662) of AIV in the live poultry market. Notably, the H4N1 subtype AIV (cs2301) was isolated from the live poultry market and its complete genome sequence was successfully determined. Subsequent analysis revealed that cs2301, resulting from a reassortment event between wild and domesticated waterfowl, exhibits multiple mutations and demonstrates potential for host transfer. CONCLUSIONS: Our research once again demonstrates the significant role of wild and domesticated waterfowl in the reassortment process of avian influenza virus, enriching the research on the H4 subtype of AIV, and emphasizing the importance of proactive monitoring the environment related to avian influenza virus.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Filogenia , Vírus da Influenza A/genética , Aves Domésticas , China/epidemiologia
6.
Viruses ; 16(4)2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38675907

RESUMO

Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.


Assuntos
Proteínas do Capsídeo , Vírus Reordenados , Rotavirus , Replicação Viral , Rotavirus/genética , Proteínas do Capsídeo/genética , Humanos , Vírus Reordenados/genética , Animais , Mutação , Linhagem Celular , Genética Reversa/métodos , Genótipo , Mutação Puntual , Infecções por Rotavirus/virologia , Genoma Viral , Antígenos Virais/genética , Antígenos Virais/imunologia
7.
Animals (Basel) ; 14(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540080

RESUMO

Viral Encephalopathy and Retinopathy (VER) is a neurological infectious fish disease that causes vacuolization and necrosis in the central nervous system, which lead to swimming abnormalities and, generally, host death in the early stages of development. VER is caused by the Nervous Necrosis Virus (NNV), a non-enveloped virus with a bisegmented and positive-stranded (+) RNA genome. The largest segment (RNA1) codes for viral polymerase while capsid protein is encoded by RNA2. The aim of this study was to explore the potential of a reverse-engineered RGNNV/SJNNV strain that harbors mutations in both 3'NCRs (position 3073 of RNA1 and 1408 and 1412 of RNA2) as an attenuated live vaccine for sole. The attenuation of this strain was confirmed through experimental infections in sole at 22 °C. Vaccination trials were performed by bath, intramuscular, and intraperitoneal injection, at two temperatures (18 and 22 °C). Our results indicate the improved survival of vaccinated fish and delayed and poorer viral replication, as well as an overexpression of immune response genes linked to T cell markers (cd4 and cd8), to an early inflammatory response (tlr7 and tnfα), and to antiviral activity (rtp3 and mx). In conclusion, our study indicates that the attenuated strain is a good vaccine candidate as it favors sole survival upon infection with the wt strain while inducing a significant immune response.

8.
Emerg Microbes Infect ; 13(1): 2302854, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189114

RESUMO

During the 2021/2022 winter season, we isolated highly pathogenic avian influenza (HPAI) H5N1 viruses harbouring an amino acid substitution from Asparagine(N) to Aspartic acid (D) at residue 193 of the hemagglutinin (HA) receptor binding domain (RBD) from migratory birds in South Korea. Herein, we investigated the characteristics of the N193D HA-RBD substitution in the A/CommonTeal/Korea/W811/2021[CT/W811] virus by using recombinant viruses engineered via reverse genetics (RG). A receptor affinity assay revealed that the N193D HA-RBD substitution in CT/W811 increases α2,6 sialic acid receptor binding affinity. The rCT/W811-HA193N virus caused rapid lethality with high virus titres in chickens compared with the rCT/W811-HA193D virus, while the rCT/W811-HA193D virus exhibited enhanced virulence in mammalian hosts with multiple tissue tropism. Surprisingly, a ferret-to-ferret transmission assay revealed that rCT/W811-HA193D virus replicates well in the respiratory tract, at a rate about 10 times higher than that of rCT/W811-HA193N, and all rCT/W811-HA193D direct contact ferrets were seroconverted at 10 days post-contact. Further, competition transmission assay of the two viruses revealed that rCT/W811-HA193D has enhanced growth kinetics compared with the rCT/W811-HA193N, eventually becoming the dominant strain in nasal turbinates. Further, rCT/W811-HA193D exhibits high infectivity in primary human bronchial epithelial (HBE) cells, suggesting the potential for human infection. Taken together, the HA-193D containing HPAI H5N1 virus from migratory birds showed enhanced virulence in mammalian hosts, but not in avian hosts, with multi-organ replication and ferret-to-ferret transmission. Thus, this suggests that HA-193D change increases the probability of HPAI H5N1 infection and transmission in humans.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Hemaglutininas , Virulência , Furões , Galinhas
9.
J Aquat Anim Health ; 36(1): 57-69, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37787030

RESUMO

OBJECTIVE: The nervous necrosis virus (NNV; genus Betanodavirus) is an aquatic pathogen that is responsible for a neurological disease affecting marine fish. Despite its almost worldwide distribution, global warming could favor the spread of NNV to new areas, highlighting the importance of conducting epidemiological surveys on both wild and farmed marine fish species. In this study, we assessed NNV prevalence in wild fish caught along the Galician Atlantic coast. METHODS: In total, 1277 fish were analyzed by reverse transcription real-time polymerase chain reaction. RESULT: Twenty two (1.72%) of those fish tested positive for NNV, including two species in which the pathogen had not yet been reported. CONCLUSION: The reassortant RGNNV/SJNNV (red-spotted grouper NNV/striped jack NNV) was detected in 55% of NNV-positive individuals, while the remaining 45% harbored the SJNNV-type genome. Moreover, from European Pilchard Sardina pilchardus and Atlantic Mackerel Scomber scombrus, we isolated four reassortant strains that carried amino acid mutations at key sites related to NNV-host interaction.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Animais , Nodaviridae/genética , Espanha/epidemiologia , Mutação , Genótipo , Doenças dos Peixes/epidemiologia
10.
Braz J Microbiol ; 54(4): 2867-2877, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897627

RESUMO

Since 2013, there has been an increase in reports of the spread of a double intergroup reassortant strain of rotavirus type A (RVA) with the genotype G3P[8] and other genes belonging to the second genogroup I2-R2-C2-M2-A2-N2-T2-E2-H2. In our study, we provide a molecular genetic characterization of rotaviruses with genotype G3P[8]-I2 isolated in Nizhny Novgorod. In our study, we used RT-PCR, Sanger sequencing, RNA-PAGE methods. Phylogenetic and phylodynamic analysis were performed using the Bayesian approach. According to our study, there was a significant increase in the proportion of G3P[8] from 15% during the period of 2020-2021 to 53% during the period of 2021-2022 in Nizhny Novgorod, Russia. Phylogenetic analysis based on the VP4 gene revealed that DS-1-like RVAs isolated in Nizhny Novgorod belong to different clusters of the P[8]-3.1 lineage, with a level of variation ranging from 1.1% to 1.3%. Based on the VP6 gene, the equine-like RVAs identified by us carry genetic variants belonging to three distinct clusters of the lineage I2-V, with a variation level ranging from 2.0% to 4.5%. These data indicate the genotypic diversity of circulating DS-1-like G3 RVAs. Phylogenetic analysis of the VP7 gene allowed us to assign the isolates identified in our study to the G3-1 lineage. We estimated that the circulation of the most recent common ancestor of the spreading strains dates back to 2002. Additionally, we determined the typical level of mutations in the VP7 gene, which amounted to 2.14*10-3 substitutions/per site/per year.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Cavalos , Filogenia , Teorema de Bayes , Genótipo , Federação Russa , Genoma Viral
11.
Viruses ; 15(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37896821

RESUMO

Outbreaks of the immunosuppressive infectious bursal disease (IBD) are frequently reported worldwide, despite the vaccination regimes. A 2009 Californian IBD outbreak caused by rA and rB isolates was described as very virulent (vv) IBD virus (IBDV); however, molecular factors beyond this virulence were not fully uncovered. Therefore, segments of both isolates were amplified, successfully cloned, whole genome sequenced by Next Generation Sequencing, genotyped, and the leading virulence factors were entirely investigated in terms of phylogenetic and amino acid analysis and protein modeling for positive selection orientation and interaction analysis. rA and rB isolates displayed the highest amino acid identity (97.84-100%) with Genotype 3 strains. Interestingly, rA and rB contained all virulence hallmarks of hypervariable (HVR), including 222A, 242I, 249Q, 256I, 284A, 286T, 294I, 299S, and 318G, as well as the serine-rich heptapeptide sequence. Moreover, we pinpointed the A3B2 genotype of rA and rB, predominant in non-reassortants, and we highlighted the absence of recombination events. Furthermore, gene-wise phylogenetic analysis showed the entire genes of rA and rB clustered with the vvIBDVs and emphasized their share in IBDV virulence. VP5 showed a virulence marker, MLSL (amino acid sequence). VP2 encountered three significant novel mutations apart from the HVR, including G163E in rA and Y173C and V178A in rB, all residing within interacting motifs. VP4 contained 168Y, 173N, 203S, and 239D characteristic for the vv phenotype. A235V mutation was detected at the dsRNA binding domain of VP3. In VP1, the TDN triplet and the mutation (V4I) were detected, characteristic of hypervirulence occurring at the N-terminus responsible for protein priming. Although selection analysis revealed seven sites, codon 222 was the only statistically significant selection site. The VP2 modeling of rA and rB highlighted great structure fitness, with 96.14% Ramachandran favored positioning including the 222A, i.e., not influencing the structure stability. The 222A was found to be non-interface surface residue, associated with no interaction with the attachment-mediated ligand motif. Our findings provide pivotal insights into the evolution and underlying virulence factors and will assist in the development of control strategies via sequence-based continuous monitoring for the early detection of novel vv strains.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Virulência/genética , Filogenia , Incidência , Surtos de Doenças , Sequenciamento Completo do Genoma , Fatores de Virulência , Aminoácidos/genética , Galinhas , Infecções por Birnaviridae/epidemiologia , Infecções por Birnaviridae/veterinária , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/química
12.
Viruses ; 15(6)2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376688

RESUMO

In 2021, amidst the COVID-19 pandemic and global food insecurity, the Nigerian poultry sector was exposed to the highly pathogenic avian influenza (HPAI) virus and its economic challenges. Between 2021 and 2022, HPAI caused 467 outbreaks reported in 31 of the 37 administrative regions in Nigeria. In this study, we characterized the genomes of 97 influenza A viruses of the subtypes H5N1, H5N2, and H5N8, which were identified in different agro-ecological zones and farms during the 2021-2022 epidemic. The phylogenetic analysis of the HA genes showed a widespread distribution of the H5Nx clade 2.3.4.4b and similarity with the HPAI H5Nx viruses that have been detected in Europe since late 2020. The topology of the phylogenetic trees indicated the occurrence of several independent introductions of the virus into the country, followed by a regional evolution of the virus that was most probably linked to its persistent circulation in West African territories. Additional evidence of the evolutionary potential of the HPAI viruses circulating in this region is the identification in this study of a putative H5N1/H9N2 reassortant virus in a mixed-species commercial poultry farm. Our data confirm Nigeria as a crucial hotspot for HPAI virus introduction from the Eurasian territories and reveal a dynamic pattern of avian influenza virus evolution within the Nigerian poultry population.


Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Humanos , Aves Domésticas , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Nigéria/epidemiologia , Pandemias , COVID-19/epidemiologia , Aves , Influenza Humana/epidemiologia , Doenças das Aves Domésticas/epidemiologia
13.
Front Microbiol ; 14: 1186869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250039

RESUMO

Although the natural hosts of avian influenza viruses (AIVs) are wild birds, multiple subtypes of AIVs have established epidemics in numerous mammals due to their cross-species spillover. Replication and evolution in intermedia mammalian hosts may facilitate AIV adaptation in humans. Because of their large population and intimacy with humans, dogs could act as such an intermedia host. To monitor the epidemiology of canine influenza viruses (CIVs) in Liaoning, China, we performed three surveillances in November 2018, March 2019, and April 2019. Five H3N2 and seven novel H3N6 CIVs had been isolated. Since the N6 neuraminidase (NA) genes were clustered with the H5N6 AIV, there is a high possibility that these H3N6 CIVs were generated from a H3N2 CIVs and H5N6 AIVs reassortment case. In addition, the H3N6 CIV showed increased mammalian adaptation ability compared to all the H3N2 strains in both in vitro and in vivo studies. Even though isolated 3 months later, the March 2019 isolated H3N2 viruses replicated more efficiently than the November 2018 isolated viruses. Our study indicated that H3 CIVs were undergoing an evolution process, through both genetic mutations and gene reassortment, at an incredible speed.

14.
Emerg Infect Dis ; 29(6): 1244-1249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209677

RESUMO

Two novel reassortant highly pathogenic avian influenza viruses (H5N1) clade 2.3.4.4b.2 were identified in dead migratory birds in China in November 2021. The viruses probably evolved among wild birds through different flyways connecting Europe and Asia. Their low antigenic reaction to vaccine antiserum indicates high risks to poultry and to public health.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Filogenia , Aves , Animais Selvagens , Aves Domésticas , China/epidemiologia , Vírus da Influenza A/genética
15.
Surg Neurol Int ; 14: 109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025520

RESUMO

Background: On December 31, 2019, the World Health Organization's China Country Office was alerted to cases of pneumonia of unknown cause detected in Wuhan City, Hubei Province of China. Methods: Due to the fact that to date, the question of the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been resolved yet, the author analyzed the main advances in the development of genetic engineering of viruses that took place before the onset of the COVID-19 pandemic. Results: The first artificial genetically modified viruses could appear in nature in the mid-1950s. The technique of nucleic acid hybridization was developed by the end-1960s. In the late 1970s, a method called the "reverse genetics" emerged to synthesize ribonucleic acid and deoxyribonucleic acid molecules. In the early 1980-s, it became possible to combine the genes of different viruses and insert the genes of one virus into the genome of another virus. Since that time, the production of vector vaccines began. At present, by modern technologies one can assemble any virus based on the nucleotide sequence available in the virus database or designed by a computer as a virtual model. Conclusion: Scientists around the world are invited to answer the call of Neil Harrison and Jeffrey Sachs of Columbia University, for a thorough and independent investigation into the origin of SARS-CoV-2. Only a full understanding of the origin of the new virus can minimize the likelihood of a similar pandemic in the future.

16.
Emerg Microbes Infect ; 12(1): 2175593, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36881645

RESUMO

Recent research have shown that influenza C virus (ICV) has a possible higher clinical impact than previously thought. But knowledge about ICV is limited compared with influenza A and B viruses, due to poor systematic surveillance and inability to propagate. Herein, a case infected with triple reassortant ICV was identified during an influenza A(H3N2) outbreak, which was the first report of ICV infection in mainland China. Phylogenetic analysis showed that this ICV was triple reassortant. Serological evidence revealed that the index case might be related to family-clustering infection. Therefore, it is essential to heighten surveillance for the prevalence and variation of ICV in China, during the COVID-19 pandemic.


Assuntos
COVID-19 , Gammainfluenzavirus , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Pandemias , Filogenia , China/epidemiologia , Surtos de Doenças
17.
Front Cell Infect Microbiol ; 13: 1111143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992684

RESUMO

Influenza A viruses (IAVs) can infect a wide variety of bird and mammal species. Their genome is characterized by 8 RNA single stranded segments. The low proofreading activity of their polymerases and the genomic reassortment between different IAVs subtypes allow them to continuously evolve, constituting a constant threat to human and animal health. In 2009, a pandemic of an IAV highlighted the importance of the swine host in IAVs adaptation between humans and birds. The swine population and the incidence of swine IAV is constantly growing. In previous studies, despite vaccination, swine IAV growth and evolution were proven in vaccinated and challenged animals. However, how vaccination can drive the evolutionary dynamics of swine IAV after coinfection with two subtypes is poorly studied. In the present study, vaccinated and nonvaccinated pigs were challenged by direct contact with H1N1 and H3N2 independent swine IAVs seeder pigs. Nasal swab samples were daily recovered and broncho-alveolar lavage fluid (BALF) was also collected at necropsy day from each pig for swine IAV detection and whole genome sequencing. In total, 39 swine IAV whole genome sequences were obtained by next generation sequencing from samples collected from both experimental groups. Subsequently, genomic, and evolutionary analyses were carried out to detect both, genomic reassortments and single nucleotide variants (SNV). Regarding the segments found per sample, the simultaneous presence of segments from both subtypes was much lower in vaccinated animals, indicating that the vaccine reduced the likelihood of genomic reassortment events. In relation to swine IAV intra-host diversity, a total of 239 and 74 SNV were detected within H1N1 and H3N2 subtypes, respectively. Different proportions of synonymous and nonsynonymous substitutions were found, indicating that vaccine may be influencing the main mechanism that shape swine IAV evolution, detecting natural, neutral, and purifying selection in the different analyzed scenarios. SNV were detected along the whole swine IAV genome with important nonsynonymous substitutions on polymerases, surface glycoproteins and nonstructural proteins, which may have an impact on virus replication, immune system escaping and virulence of virus, respectively. The present study further emphasized the vast evolutionary capacity of swine IAV, under natural infection and vaccination pressure scenarios.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Humanos , Animais , Suínos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus Reordenados/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Vírus da Influenza A/genética , Genômica , Vacinação/veterinária , Doenças dos Suínos/prevenção & controle , Mamíferos
18.
Vet Sci ; 10(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851379

RESUMO

Aquaculture is a constantly growing sector. The intensification of fish production and the movement of aquatic animals could cause the spread of infectious diseases. Remarkably, the diffusion of viral agents represents the major bottleneck for finfish production, and viral encephalopathy and retinopathy (VER) is considered the most impacting disease for Mediterranean aquaculture. No effective therapies are available to contrast VER, and vaccination can be applied only in grow-out facilities. Hence, programs to minimize the sanitary risks in farms are paramount to implementing hygienic standards and biosecurity. This study aimed to evaluate the in vitro virucidal activity of a peroxy-acid disinfectant (Virkon® S, DuPont, Sudbury, UK) towards the two NNV strains most widespread in the Mediterranean Sea. Remarkably, two protocols were applied to assess the virucidal activity under different conditions of use: the suspension test and the net test. The latter has been applied to evaluate the efficacy of the biocide on instruments, simulating the in-field application. The obtained results demonstrated the suitability of the tested biocide for NNV inactivation, being effective under some of the tested conditions. However, the presence of organic matter, the concentration of the product, and the application conditions can significantly affect the result of the disinfection procedure.

19.
J Med Virol ; 95(2): e28476, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36609855

RESUMO

The H10 subtypes of avian influenza viruses pose a continual threat to the poultry industry and human health. The sporadic spillover of H10 subtypes viruses from poultry to humans is represented by the H10N8 human cases in 2013 and the recent H10N3 human infection in 2021. However, the genesis and characteristics of the recent reassortment H10N3 viruses have not been systemically investigated. In this study, we characterized 20 H10N3 viruses isolated in live poultry markets during routine nationwide surveillance in China from 2014 to 2021. The viruses in the recent reassortant genotype acquired their hemagglutinin (HA) and neuraminidase (NA) genes from the duck H10 viruses and H7N3 viruses, respectively, whereas the internal genes were derived from chicken H9N2 viruses as early as 2019. Receptor-binding analysis indicated that two of the tested H10N3 viruses had a higher affinity for human-type receptors than for avian-type receptors, highlighting the potential risk of avian-to-human transmission. Animal studies showed that only viruses belonging to the recent reassortant genotype were pathogenic in mice; two tested viruses transmitted via direct contact and one virus transmitted by respiratory droplets in guinea pigs, though with limited efficiency. These findings emphasize the need for enhanced surveillance of H10N3 viruses.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Humanos , Animais , Cobaias , Camundongos , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H7N3 , Aves Domésticas , Galinhas , China/epidemiologia , Filogenia , Vírus Reordenados/genética
20.
Vet Microbiol ; 277: 109620, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36543090

RESUMO

Since March 2021, an infectious characterized by white necrotic foci throughout the goose body has appeared in the major goose-producing regions in China. This disease has caused economic hardship for goose farms in many regions of China with approximately 50 % mortality. A novel goose-origin orthoreovirus was isolated from the spleen of diseased geese and designated as N-GRV/HN/Goose/2021/China (N-GRV-HN21) strain. Next-generation sequencing and phylogenetic analysis revealed that the isolate was a reassortant virus containing viral gene segments from three ARV serotypes that infect duck, muscovy duck, and goose. Geese infection test showed that both N-GRV-HN21-infected and contacted geese displayed whole-body white necrotic foci. N-GRV RNA was detected in different organs of both infected and contacted geese, indicating that the N-GRV isolate is pathogenic and transmissible in geese. Seroconversion was also observed in experimentally infected and contacted geese. A prevalence study of 323 goose serum samples collected from different goose breeding areas showed that 86 % of the geese were positive for N-GRV. In conclusion, all results warrant the necessity to monitor orthoreovirus epidemiology and reassortment as the orthoreovirus could be an important pathogen for the waterfowl industry and a novel orthoreovirus might emerge to threaten animal and public health.


Assuntos
Orthoreovirus Aviário , Orthoreovirus , Doenças das Aves Domésticas , Infecções por Reoviridae , Animais , Orthoreovirus/genética , Filogenia , Virulência , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , China/epidemiologia , Necrose/veterinária , Patos , Recombinação Genética , Gansos , Doenças das Aves Domésticas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...