Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(6): 3915-3931, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38836645

RESUMO

One of the crucial requirements of quantum dots for biological applications is their surface modification for very specific and enhanced biological recognition and uptake. Toward this end, we present the green synthesis of bright, red-emitting carbon quantum dots derived from mango leaf extract (mQDs). These mQDs are conjugated electrostatically with dopamine to form mQDs-dopamine (mQDs:DOPA) bioconjugates. Bright-red fluorescence of mQDs was used for bioimaging and uptake in cancerous and noncancerous cell lines, tissues, and in vivo models like zebrafish. mQDs exhibited the highest uptake in brain tissue compared to the heart, kidney, and liver. mQD:DOPA conjugates killed breast cancer cells and increased uptake in epithelial RPE-1 cells and zebrafish. Additionally, mQDs:DOPA promoted neuronal differentiation of SH-SY5Y cells to differentiated neurons. Both mQDs and mQDs:DOPA exhibited the potential for higher collective cell migrations, implicating their future potential as next-generation tools for advanced biological and biomedical applications.


Assuntos
Carbono , Diferenciação Celular , Dopamina , Pontos Quânticos , Peixe-Zebra , Pontos Quânticos/química , Humanos , Carbono/química , Carbono/farmacologia , Dopamina/metabolismo , Dopamina/química , Animais , Diferenciação Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Tamanho da Partícula , Teste de Materiais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Imagem Óptica , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral
2.
Nanomaterials (Basel) ; 13(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37242053

RESUMO

The possibility of performing the synthesis of red-emitting carbon quantum dots (r-CDs), in a well-controllable, large scale and environmentally sustainable way is undoubtedly of fundamental importance, as it will pave the way to their employment in advanced medical large-scale applications. Knowledge of the difficulties involved in producing r-CDs with reproducible optical, structural, and chemical characteristics, might help in their large-scale production, making the process standardizable. In this work, we present an experimental study, also supported by results reported in the literature, on the issues encountered during the synthesis and post-synthesis purification treatments of r-CDS. We focused on the hydrothermal approach as it was found to be more suitable for future large-scale industrial applications. We propose three synthetic strategies and observed that employing p-phenylenediamine (p-PDA), as a precursor, the synthetic process showed low efficiency with low yields of r-CDs, large amounts of unreacted precursor, and reaction intermediates. Changing reaction parameters does not improve performance. The r-CDs obtained using citric acid (CA) and urea, as precursors, resulted to be sensitive to pH and difficult to separate from the reaction mixture. Furthermore, the proposed synthetic strategies show that the hydrothermal preparation of r-CDS requires approaches that are not fully sustainable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA