Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Diagnostics (Basel) ; 14(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732382

RESUMO

BACKGROUND: The current manuscript's aim was to determine the human papillomavirus (HPV) genotype-specific prevalence and distribution among individuals, males, and females, of different ages in the region of Apulia, Italy, highlighting the possible variables involved in the carcinogenicity mechanism. In addition, we proposed two hypothetical models of HPV's molecular dynamics, intending to clarify the impact of prevention and therapeutic strategies, explicitly modeled by recent survey data. METHODS: We presented clinical data from 9647 participants tested for either high-risk (HR) or low-risk (LR) HPV at the affiliated Bari Policlinic University Hospital of Bari from 2011 to 2022. HPV DNA detection was performed using nested-polymerase chain reaction (PCR) and multiplex real-time PCR assay. Statistical analysis showed significant associations for all genders and ages and both HR- and LR-HPV types. A major number of significant pairwise associations were detected for the higher-risk types and females and lower-risk types and males. RESULTS: The overall prevalence of HPV was 50.5% (n-4.869) vs. 49.5% (n-4.778) of the study population, of which 74.4% (n-3621) were found to be HPV high-risk (HR-HPV) genotypes and 57.7% (n-2.807) low-risk HPV (LR-HPV) genotypes, of which males were 58% and females 49%; the three most prevalent HR-HPV genotypes were HPV 53 (n707-15%), 16 (n704-14%), and 31 (n589-12%), and for LR-HPV, they were 42 (19%), 6 (16%), and 54 (13%); 56% of patients screened for HPV were ≤ 30 years old, 53% were between 31 and 40 years old, 46% were 41-50 and 51-60 years old, and finally, 44% of subjects were >60 years old. CONCLUSIONS: Our study provided comprehensive epidemiological data on HPV prevalence and genotype distribution among 9647 participants, which could serve as a significant reference for clinical practice, and it implied the necessity for more effective screening methods for HPV carcinogenesis covering the use of more specific molecular investigations. Although this is a predominantly descriptive and epidemiological study, the data obtained offer not only a fairly unique trend compared to other studies of different realities and latitudes but also lead us to focus on the HPV infection within two groups of young people and adults and hypothesize the possible involvement of dysbiosis, stem cells, and the retrotransposition mechanism.

2.
Trends Cancer ; 10(4): 286-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499453

RESUMO

Subsets of long interspersed nuclear element 1 (LINE-1) retrotransposons can 'retrotranspose' throughout the human genome at a cost to host cell fitness, as observed in some cancers. Pharmacological inhibition of LINE-1 retrotransposition requires a comprehensive understanding of the LINE-1 ORF2p reverse transcriptase. Two recent publications, by Thawani et al. and Baldwin et al., report structures of LINE-1 ORF2p and address long-standing mechanistic gaps regarding LINE-1 retrotransposition. Both studies will be critical to design new specific inhibitors of the LINE-1 ORF2p reverse transcriptase.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Transcrição Reversa , Humanos , Células HeLa , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo
3.
Toxicology ; 503: 153768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442839

RESUMO

The present work aims to clarify the genotype differences of a model organism Saccharomyces cerevisiae in response to bee venom. The study evaluated various endpoints including cell survival, induction of physiologically active superoxide anions, mitotic gene conversion, mitotic crossing-over, reverse mutations, DNA double-strand breaks, and Ty1 retrotransposition. The role of the intact mitochondria and the YAP1 transcription factor was also evaluated. Our results indicate a genotype-specific response. The first experimental evidence has been provided that bee venom induces physiologically active superoxide anions and DNA double-strand breaks in S. cerevisiae. The lack of oxidative phosphorylation due to disrupted or missing mitochondrial DNA reduces but not diminishes the cytotoxicity of bee venom. The possible modes of action could be considered direct damage to membranes (cytotoxic effect) and indirect damage to DNA through oxidative stress (genotoxic effect). YAP1 transcription factor was not found to be directly involved in cell defense against bee venom treatment.


Assuntos
Venenos de Abelha , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Venenos de Abelha/toxicidade , DNA/metabolismo , Dano ao DNA , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxidos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Humanos
4.
Cell Rep ; 43(2): 113749, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329876

RESUMO

Aberrant long interspersed element 1 (LINE-1 or L1) activity can cause insertional mutagenesis and chromosomal rearrangements and has been detected in several types of cancers. Here, we show that neddylation, a post-translational modification process, is essential for L1 transposition. The antineoplastic drug MLN4924 is an L1 inhibitor that suppresses NEDD8-activating enzyme activity. Neddylation inhibition by MLN4924 selectively impairs ORF2p-mediated L1 reverse transcription and blocks the generation of L1 cDNA. Consistent with these results, MLN4924 treatment suppresses the retrotransposition activity of the non-autonomous retrotransposons short interspersed nuclear element R/variable number of tandem repeat/Alu and Alu, which rely on the reverse transcription activity of L1 ORF2p. The E2 enzyme UBE2M in the neddylation pathway, rather than UBE2F, is required for L1 ORF2p and retrotransposition. Interference with the functions of certain neddylation-dependent Cullin-really interesting new gene E3 ligases disrupts L1 reverse transcription and transposition activity. Our findings provide insights into the regulation of L1 retrotransposition and the identification of therapeutic targets for L1 dysfunctions.


Assuntos
Ciclopentanos , Elementos Nucleotídeos Longos e Dispersos , Pirimidinas , Retroelementos , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Aberrações Cromossômicas , Proteínas Culina/genética , Enzimas de Conjugação de Ubiquitina
5.
G3 (Bethesda) ; 14(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38366796

RESUMO

Aging is a multifactorial process that disturbs homeostasis, increases disease susceptibility, and ultimately results in death. Although the definitive set of molecular mechanisms responsible for aging remain to be discovered, epigenetic change over time is proving to be a promising piece of the puzzle. Several post-translational histone modifications have been linked to the maintenance of longevity. Here, we focus on lysine-36 of the replication-independent histone protein, H3.3 (H3.3K36). To interrogate the role of this residue in Drosophila developmental gene regulation, we generated a lysine-to-arginine mutant that blocks the activity of its cognate-modifying enzymes. We found that an H3.3BK36R mutation causes a significant reduction in adult lifespan, accompanied by dysregulation of the genomic and transcriptomic architecture. Transgenic co-expression of wild-type H3.3B completely rescues the longevity defect. Because H3.3 is known to accumulate in nondividing tissues, we carried out transcriptome profiling of young vs aged adult fly heads. The data show that loss of H3.3K36 results in age-dependent misexpression of NF-κB and other innate immune target genes, as well as defects in silencing of heterochromatin. We propose H3.3K36 maintains the postmitotic epigenomic landscape, supporting longevity by regulating both pericentric and telomeric retrotransposons and by suppressing aberrant immune signaling.


Assuntos
Drosophila , Histonas , Longevidade , Animais , Drosophila/genética , Drosophila/metabolismo , Heterocromatina , Histonas/genética , Histonas/metabolismo , Longevidade/genética , Lisina/metabolismo
6.
Rev Med Virol ; 34(1): e2511, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282406

RESUMO

Bat borne disease have attracted many researchers for years. The ability of the bat to host several exogenous viruses has been a focal point in research lately. The latest pandemic shifted the focus of scholars towards understanding the difference in response to viral infection between humans and bats. In a way to understand the basis of the interaction and behaviour between SARS-CoV-2 and the environment, a conflict between different researchers across the globe arose. This conflict asked many questions about the truth of virus-host integration, whether an interaction between RNA viruses and human genomes has ever been reported, the possible route and mechanism that could lead to genomic integration of viral sequences and the methods used to detect integration. This article highlights those questions and will discuss the diverse opinions of the controversy and provide examples on reported integration mechanisms and possible detection techniques.


Assuntos
COVID-19 , Quirópteros , Viroses , Animais , Humanos , SARS-CoV-2/genética , Genoma Humano , COVID-19/genética , Viroses/genética , Genoma Viral , Filogenia
7.
Cancer Sci ; 115(1): 247-256, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013627

RESUMO

The long interspersed nuclear element-1 (LINE-1) retrotransposons are a major family of mobile genetic elements, comprising approximately 17% of the human genome. The methylation state of LINE-1 is often used as an indicator of global DNA methylation levels and it regulates the retrotransposition and somatic insertion of the genetic element. We have previously reported the significant relationship between LINE-1 hypomethylation and poor prognosis in upper gastrointestinal (GI) cancers. However, the causal relationships between LINE-1 hypomethylation, retrotransposition, and tumor-specific insertion in upper GI cancers remain unknown. We used bisulfite-pyrosequencing and quantitative real-time PCR to verify LINE-1 methylation and copy number in tissue samples of 101 patients with esophageal and 103 patients with gastric cancer. Furthermore, we analyzed the LINE-1 retrotransposition profile with an originally developed L1Hs-seq. In tumor samples, LINE-1 methylation levels were significantly lower than non-tumor controls, while LINE-1 copy numbers were markedly increased. As such, there was a significant inverse correlation between the LINE-1 methylation level and copy number in tumor tissues, with lower LINE-1 methylation levels corresponding to higher LINE-1 copy numbers. Of particular importance is that somatic LINE-1 insertions were more numerous in tumor than normal tissues. Furthermore, we observed that LINE-1 was inserted evenly across all chromosomes, and most often within genomic regions associated with tumor-suppressive genes. LINE-1 hypomethylation in upper GI cancers is related to increased LINE-1 retrotransposition and tumor-specific insertion events, which may collectively contribute to the acquisition of aggressive tumor features through the inactivation of tumor-suppressive genes.


Assuntos
Neoplasias Gastrointestinais , Neoplasias Gástricas , Humanos , Metilação de DNA/genética , Neoplasias Gastrointestinais/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias Gástricas/genética , Esôfago
8.
Front Cell Dev Biol ; 11: 1274807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152346

RESUMO

Cellular senescence is characterized by replication arrest in response to stress stimuli. Senescent cells accumulate in aging tissues and can trigger organ-specific and possibly systemic dysfunction. Although senescent cell populations are heterogeneous, a key feature is that they exhibit epigenetic changes. Epigenetic changes such as loss of repressive constitutive heterochromatin could lead to subsequent LINE-1 derepression, a phenomenon often described in the context of senescence or somatic evolution. LINE-1 elements decode the retroposition machinery and reverse transcription generates cDNA from autonomous and non-autonomous TEs that can potentially reintegrate into genomes and cause structural variants. Another feature of cellular senescence is mitochondrial dysfunction caused by mitochondrial damage. In combination with impaired mitophagy, which is characteristic of senescent cells, this could lead to cytosolic mtDNA accumulation and, as a genomic consequence, integrations of mtDNA into nuclear DNA (nDNA), resulting in mitochondrial pseudogenes called numts. Thus, both phenomena could cause structural variants in aging genomes that go beyond epigenetic changes. We therefore compared proliferating and senescent IMR-90 cells in terms of somatic de novo numts and integrations of a non-autonomous composite retrotransposons - the so-called SVA elements-that hijack the retropositional machinery of LINE-1. We applied a subtractive and kinetic enrichment technique using proliferating cell DNA as a driver and senescent genomes as a tester for the detection of nuclear flanks of de novo SVA integrations. Coupled with deep sequencing we obtained a genomic readout for SVA retrotransposition possibly linked to cellular senescence in the IMR-90 model. Furthermore, we compared the genomes of proliferative and senescent IMR-90 cells by deep sequencing or after enrichment of nuclear DNA using AluScan technology. A total of 1,695 de novo SVA integrations were detected in senescent IMR-90 cells, of which 333 were unique. Moreover, we identified a total of 81 de novo numts with perfect identity to both mtDNA and nuclear hg38 flanks. In summary, we present evidence for possible age-dependent structural genomic changes by paralogization that go beyond epigenetic modifications. We hypothesize, that the structural variants we observe potentially impact processes associated with replicative aging of IMR-90 cells.

9.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37935057

RESUMO

Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across ∼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.


Assuntos
Visão de Cores , Lepidópteros , Humanos , Animais , Opsinas/genética , Duplicação Gênica , Lepidópteros/genética , Evolução Molecular , Opsinas de Bastonetes/química , Opsinas de Bastonetes/genética , Insetos/genética , Filogenia , Expressão Gênica
10.
Virology ; 588: 109911, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918186

RESUMO

The walbRep megasatellite DNA found in the red-necked wallaby was formed from the walb endogenous retrovirus. Our previous PCR experiments suggested the presence of walb and absence of walbRep in the genome of the tammar wallaby, which diverged from the red-necked wallaby 2-3 Mya. The results failed to exclude the possibility that certain walbRep sequences might have remained undetected owing to variation in the primer-annealing regions; therefore, the aforementioned suggestion was not confirmed. To obtain conclusive evidence, we analyzed the structure of walb sequences drawn from the tammar wallaby genome database recently updated to a chromosome-level assembly. All walb copies existed as separate DNA segments, not constituting tandem repeats. We concluded that walbRep was formed in the red-necked wallaby lineage after its divergence from the tammar wallaby. We also confirm the presence of a walb copy with an anomalistic, complex structure and propose a simple model for its generation mechanism.


Assuntos
Retrovirus Endógenos , Macropodidae , Animais , Macropodidae/genética , DNA Satélite/genética , Retrovirus Endógenos/genética , DNA
11.
Epigenetics Chromatin ; 16(1): 39, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845773

RESUMO

BACKGROUND: Vitamin C (vitC) enhances the activity of 2-oxoglutarate-dependent dioxygenases, including TET enzymes, which catalyse DNA demethylation, and Jumonji-domain histone demethylases. The epigenetic remodelling promoted by vitC improves the efficiency of induced pluripotent stem cell derivation, and is required to attain a ground-state of pluripotency in embryonic stem cells (ESCs) that closely mimics the inner cell mass of the early blastocyst. However, genome-wide DNA and histone demethylation can lead to upregulation of transposable elements (TEs), and it is not known how vitC addition in culture media affects TE expression in pluripotent stem cells. RESULTS: Here we show that vitC increases the expression of several TE families, including evolutionarily young LINE-1 (L1) elements, in mouse ESCs. We find that TET activity is dispensable for L1 upregulation, and that instead it occurs largely as a result of H3K9me3 loss mediated by KDM4A/C histone demethylases. Despite increased L1 levels, we did not detect increased somatic insertion rates in vitC-treated cells. Notably, treatment of human ESCs with vitC also increases L1 protein levels, albeit through a distinct, post-transcriptional mechanism. CONCLUSION: VitC directly modulates the expression of mouse L1s and other TEs through epigenetic mechanisms, with potential for downstream effects related to the multiple emerging roles of L1s in cellular function.


Assuntos
Ácido Ascórbico , Células-Tronco Embrionárias Murinas , Humanos , Animais , Camundongos , Ácido Ascórbico/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Elementos Nucleotídeos Longos e Dispersos , Metilação de DNA , Histona Desmetilases/metabolismo , DNA/metabolismo , Desmetilação , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo
12.
Front Plant Sci ; 14: 1212528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502704

RESUMO

Glossiness is an important quality-related trait of Chinese cabbage, which is a leafy vegetable crop in the family Brassicaceae. The glossy trait is caused by abnormal cuticular wax accumulation. In this study, on the basis of a bulked segregant analysis coupled with next-generation sequencing (BSA-seq) and fine-mapping, the most likely candidate gene responsible for the glossy phenotype of Chinese cabbage was identified. It was subsequently named Brcer2 because it is homologous to AtCER2 (At4g24510). A bioinformatics analysis indicated a long interspersed nuclear element 1 (LINE-1) transposable element (named BrLINE1-RUP) was inserted into the first exon of Brcer2 in HN19-G via an insertion-mediated deletion mechanism, which introduced a premature termination codon. Gene expression analysis showed that the InDel mutation of BrCER2 reduced the transcriptional expression levels of Brcer2 in HN19-G. An analysis of cuticular waxes suggested that a loss-of-function mutation to BrCER2 in Chinese cabbage leads to a severe decrease in the abundance of very-long-chain-fatty-acids (> C28), resulting in the production of a cauline leaf, inflorescence stem, flower, and pistil with a glossy phenotype. These findings imply the insertion of the LINE-1 transposable element BrLINE1-RUP into BrCER2 can modulate the waxy traits of Chinese cabbage plants.

13.
Cell ; 186(13): 2865-2879.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37301196

RESUMO

Retroelements are the widespread jumping elements considered as major drivers for genome evolution, which can also be repurposed as gene-editing tools. Here, we determine the cryo-EM structures of eukaryotic R2 retrotransposon with ribosomal DNA target and regulatory RNAs. Combined with biochemical and sequencing analysis, we reveal two essential DNA regions, Drr and Dcr, required for recognition and cleavage. The association of 3' regulatory RNA with R2 protein accelerates the first-strand cleavage, blocks the second-strand cleavage, and initiates the reverse transcription starting from the 3'-tail. Removing 3' regulatory RNA by reverse transcription allows the association of 5' regulatory RNA and initiates the second-strand cleavage. Taken together, our work explains the DNA recognition and RNA supervised sequential retrotransposition mechanisms by R2 machinery, providing insights into the retrotransposon and application reprogramming.


Assuntos
RNA , Retroelementos , RNA/metabolismo , Clivagem do DNA , DNA Polimerase Dirigida por RNA/metabolismo , Transcrição Reversa
14.
Cell Rep ; 42(6): 112625, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294634

RESUMO

Endogenous retroviruses (ERVs) have rewired host gene networks. To explore the origins of co-option, we employed an active murine ERV, IAPEz, and an embryonic stem cell (ESC) to neural progenitor cell (NPC) differentiation model. Transcriptional silencing via TRIM28 maps to a 190 bp sequence encoding the intracisternal A-type particle (IAP) signal peptide, which confers retrotransposition activity. A subset of "escapee" IAPs (∼15%) exhibits significant genetic divergence from this sequence. Canonical repressed IAPs succumb to a previously undocumented demarcation by H3K9me3 and H3K27me3 in NPCs. Escapee IAPs, in contrast, evade repression in both cell types, resulting in their transcriptional derepression, particularly in NPCs. We validate the enhancer function of a 47 bp sequence within the U3 region of the long terminal repeat (LTR) and show that escapee IAPs convey an activating effect on nearby neural genes. In sum, co-opted ERVs stem from genetic escapees that have lost vital sequences required for both TRIM28 restriction and autonomous retrotransposition.


Assuntos
Retrovirus Endógenos , Proteína 28 com Motivo Tripartido , Animais , Camundongos , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Histonas/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Sequências Repetidas Terminais/genética
15.
Front Plant Sci ; 14: 1065631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875616

RESUMO

Intronless genes (IGs), which are a feature of prokaryotes, are a fascinating group of genes that are also present in eukaryotes. In the current study, a comparison of Poaceae genomes revealed that the origin of IGs may have involved ancient intronic splicing, reverse transcription, and retrotranspositions. Additionally, IGs exhibit the typical features of rapid evolution, including recent duplications, variable copy numbers, low divergence between paralogs, and high non-synonymous to synonymous substitution ratios. By tracing IG families along the phylogenetic tree, we determined that the evolutionary dynamics of IGs differed among Poaceae subfamilies. IG families developed rapidly before the divergence of Pooideae and Oryzoideae and expanded slowly after the divergence. In contrast, they emerged gradually and consistently in the Chloridoideae and Panicoideae clades during evolution. Furthermore, IGs are expressed at low levels. Under relaxed selection pressure, retrotranspositions, intron loss, and gene duplications and conversions may promote the evolution of IGs. The comprehensive characterization of IGs is critical for in-depth studies on intron functions and evolution as well as for assessing the importance of introns in eukaryotes.

16.
Viruses ; 15(3)2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36992338

RESUMO

SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole-genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences, but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10-20-fold more sensitive per tested cell, TagMap can interrogate 1000-2000-fold more cells and, therefore, can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected cells, in contrast to transfected cells, may be facilitated because virus infection, in contrast to viral RNA transfection, results in significantly higher viral RNA levels and stimulates LINE1 expression by causing cellular stress.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transcrição Reversa , RNA Mensageiro/genética , RNA Viral/genética , RNA Viral/metabolismo , Genômica
17.
BMC Ecol Evol ; 23(1): 5, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915058

RESUMO

Group II introns are common in the two endosymbiotic organelle genomes of the plant lineage. Chloroplasts harbor 22 positionally conserved group II introns whereas their occurrence in land plant (embryophyte) mitogenomes is highly variable and specific for the seven major clades: liverworts, mosses, hornworts, lycophytes, ferns, gymnosperms and flowering plants. Each plant group features "signature selections" of ca. 20-30 paralogues from a superset of altogether 105 group II introns meantime identified in embryophyte mtDNAs, suggesting massive intron gains and losses along the backbone of plant phylogeny. We report on systematically categorizing plant mitochondrial group II introns into "families", comprising evidently related paralogues at different insertion sites, which may even be more similar than their respective orthologues in phylogenetically distant taxa. Including streptophyte (charophyte) algae extends our sampling to 161 and we sort 104 streptophyte mitochondrial group II introns into 25 core families of related paralogues evidently arising from retrotransposition events. Adding to discoveries of only recently created intron paralogues, hypermobile introns and twintrons, our survey led to further discoveries including previously overlooked "fossil" introns in spacer regions or e.g., in the rps8 pseudogene of lycophytes. Initially excluding intron-borne maturase sequences for family categorization, we added an independent analysis of maturase phylogenies and find a surprising incongruence between intron mobility and the presence of intron-borne maturases. Intriguingly, however, we find that several examples of nuclear splicing factors meantime characterized simultaneously facilitate splicing of independent paralogues now placed into the same intron families. Altogether this suggests that plant group II intron mobility, in contrast to their bacterial counterparts, is not intimately linked to intron-encoded maturases.


Assuntos
Evolução Molecular , Mitocôndrias , Íntrons/genética , Mitocôndrias/genética , Plantas/genética , Núcleo Celular
18.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768929

RESUMO

The genome is no longer deemed as a fixed and inert item but rather as a moldable matter that is continuously evolving and adapting. Within this frame, Transposable Elements (TEs), ubiquitous, mobile, repetitive elements, are considered an alive portion of the genomes to date, whose functions, although long considered "dark", are now coming to light. Here we will review that, besides the detrimental effects that TE mobilization can induce, TEs have shaped genomes in their current form, promoting genome sizing, genomic rearrangements and shuffling of DNA sequences. Although TEs are mostly represented in the genomes by evolutionarily old, short, degenerated, and sedentary fossils, they have been thoroughly co-opted by the hosts as a prolific and original source of regulatory instruments for the control of gene transcription and genome organization in the nuclear space. For these reasons, the deregulation of TE expression and/or activity is implicated in the onset and progression of several diseases. It is likely that we have just revealed the outermost layers of TE functions. Further studies on this portion of the genome are required to unlock novel regulatory functions that could also be exploited for diagnostic and therapeutic approaches.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Elementos de DNA Transponíveis/genética , Tamanho do Genoma , Fases de Leitura , Evolução Molecular
19.
Methods Mol Biol ; 2607: 257-309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36449167

RESUMO

The ongoing mobilization of active non-long terminal repeat (LTR) retrotransposons continues to impact the genomes of most mammals, including humans and rodents. Non-LTR retrotransposons mobilize using an intermediary RNA and a copy-and-paste mechanism termed retrotransposition. Non-LTR retrotransposons are subdivided into long and short interspersed elements (LINEs and SINEs, respectively), depending on their size and autonomy; while active class 1 LINEs (LINE-1s or L1s) encode the enzymatic machinery required to mobilize in cis, active SINEs use the enzymatic machinery of active LINE-1s to mobilize in trans. The mobilization mechanism used by LINE-1s/SINEs was exploited to develop ingenious plasmid-based retrotransposition assays in cultured cells, which typically exploit a reporter gene that can only be activated after a round of retrotransposition. Retrotransposition assays, in cis or in trans, are instrumental tools to study the biology of mammalian LINE-1s and SINEs. In fact, these and other biochemical/genetic assays were used to uncover that endogenous mammalian LINE-1s/SINEs naturally retrotranspose during early embryonic development. However, embryonic stem cells (ESCs) are typically used as a cellular model in these and other studies interrogating LINE-1/SINE expression/regulation during early embryogenesis. Thus, human and mouse ESCs represent an excellent model to understand how active retrotransposons are regulated and how their activity impacts the germline. Here, we describe robust and quantitative protocols to study human/mouse LINE-1 (in cis) and SINE (in trans) retrotransposition using (human and mice) ESCs. These protocols are designed to study the mobilization of active non-LTR retrotransposons in a cellular physiologically relevant context.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Retroelementos , Feminino , Gravidez , Humanos , Camundongos , Animais , Retroelementos/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Células-Tronco Embrionárias , Elementos Nucleotídeos Curtos e Dispersos , Bioensaio , Mamíferos
20.
FEBS Lett ; 597(3): 380-406, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460901

RESUMO

Retrotransposons, including LINE-1, Alu, SVA, and endogenous retroviruses, are one of the major constituents of human genomic repetitive sequences. Through the process of retrotransposition, some of them occasionally insert into new genomic locations by a copy-paste mechanism involving RNA intermediates. Irrespective of de novo genomic insertions, retrotransposon expression can lead to DNA double-strand breaks and stimulate cellular innate immunity through endogenous patterns. As a result, retrotransposons are tightly regulated by multi-layered regulatory processes to prevent the dangerous effects of their expression. In recent years, significant progress was made in revealing how retrotransposon biology intertwines with general post-transcriptional RNA metabolism. Here, I summarize current knowledge on the involvement of post-transcriptional factors in the biology of retrotransposons, focusing on LINE-1. I emphasize general RNA metabolisms such as methylation of adenine (m6 A), RNA 3'-end polyadenylation and uridylation, RNA decay and translation regulation. I discuss the effects of retrotransposon RNP sequestration in cytoplasmic bodies and autophagy. Finally, I summarize how innate immunity restricts retrotransposons and how retrotransposons make use of cellular enzymes, including the DNA repair machinery, to complete their replication cycles.


Assuntos
Regulação da Expressão Gênica , Retroelementos , Humanos , Retroelementos/genética , Elementos Nucleotídeos Longos e Dispersos/genética , RNA/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA