Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt B): 419-430, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39255599

RESUMO

CO2 storage in deep saline aquifers is an effective strategy for reducing greenhouse gas emission. However, salt precipitation triggered by evaporation of water into injected dry CO2 causes injectivity reduction. Predicting the distribution of precipitated salts and their impact on near-well permeability remains challenging. Therefore, a detailed investigation of the interactions between salt precipitation and porous domain is essential for of revealing the mechanisms of pore blockage due to salt crystallization. Through series of microfluidic experiments, direct observations, coupled with detailed imaging processing, form the basis for explaining these phenomena and provide a relationship between water and salt saturations, highlighting the critical roles played by local capillary-driven flow and water film along grains in influencing water relocation. The results reveal two distinct types of salt crystallization: occurring inside the brine with smooth edges and at the CO2-brine interface with rough edges. Furthermore, the impact of local heterogeneity and surface wettability on salt precipitation patterns is discussed. The transition region between the porous domains and inlet/outlet channels exhibits brine backflow and a larger amount of salt accumulation. This paper presents a comprehensive analysis of the dynamic process of salt dry-out occurring during CO2 injection at the pore scale.

2.
Sci Total Environ ; 950: 175232, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111444

RESUMO

Geological CO2 sequestration is a proven method for mitigating climate change by reducing atmospheric CO2 levels. However, CO2 injection often induces salt precipitation, leading to decreased formation permeability, which in turn limits CO2 injectivity and storage capacity. Conventional approaches, such as freshwater and low-salinity water injection, have been employed to mitigate salt precipitation. Despite their widespread use, these methods provide only temporary improvement and can be ineffective in some scenarios, resulting in long-term issues such as salt recrystallization and clay swelling. Given the complexity and significance of this issue, a comprehensive review of salt precipitation mechanisms and remediation techniques is essential. This paper critically examines the processes of salt precipitation during CO2 injection in saline aquifers and evaluates various remediation techniques aimed at improving CO2 injectivity. The paper reviews the influence of CO2 flow dynamics, geochemical reactions, and fluid properties on salt precipitation and pore throat accumulation, assessing the efficacy and limitations of existing mitigation methods. Additionally, the paper explores alternative techniques with potential for long-term CO2 sequestration, analyzing their advantages and drawbacks. Based on insights from the reviewed sources, the paper recommends exploring alternative treatment measures and the integration of hybrid solutions to enhance CO2 injectivity. The findings presented serve as a valuable reference for advancing research and practice in this critical area, offering a deeper understanding of the challenges and potential solutions for effective CO2 sequestration in saline aquifers.

3.
Protein Expr Purif ; 222: 106535, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38901714

RESUMO

Human superoxide dismutase (hSOD1) plays an important role in the aerobic metabolism and free radical eliminating process in the body. However, the production of existing SOD faces problems such as complex purification methods, high costs, and poor product stability. This experiment achieved low-cost, rapid, and simple purification of hSOD1 through ammonium sulfate precipitation method and heat resistance of recombinant protein. We constructed a recombinant protein hSOD1-LR containing a resilin-like polypeptide tag and expressed it. The interest protein was purified by ammonium sulfate precipitation method, and the results showed that the purification effect of 1.5 M (NH4)2SO4 was the best, with an enzyme activity recovery rate of 80 % after purification. Then, based on its thermal stability, further purification of the interest protein at 60 °C revealed a purification fold of up to 24 folds, and the purification effect was similar to that of hSOD1-6xHis purified by nickel column affinity chromatography. The stability of hSOD1-LR showed that the recombinant protein hSOD1-LR has better stability than hSOD-6xHis. hSOD1-LR can maintain 76.57 % activity even after 150 min of reaction at 70 °C. At same time, hSOD1-LR had activity close to 80 % at pH < 5, indicating good acid resistance. In addition, after 28 days of storage at 4 °C and 40 °C, hSOD1-LR retained 92 % and 87 % activity, respectively. Therefore, the method of purifying hSOD1-LR through salt precipitation may have positive implications for the study of SOD purification.


Assuntos
Proteínas Recombinantes de Fusão , Humanos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/química , Superóxido Dismutase-1/isolamento & purificação , Superóxido Dismutase-1/metabolismo , Estabilidade Enzimática , Superóxido Dismutase/isolamento & purificação , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Clonagem Molecular , Proteínas de Insetos
4.
Biomed Mater ; 19(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38211318

RESUMO

Magnesium (Mg) alloys have attracted attention as biodegradable metals, but the details of their corrosion behavior under biological environment have not been elucidated. Previous studies have suggested that diffusion through blood flow may influence Mg corrosion. Therefore, to understand the degradation behaviors of Mg, we analyzed insoluble salt precipitation associated with Mg corrosion in model tissue with different diffusion rates. A pure Mg specimen was immersed into a model tissue prepared with cell culture medium supplemented by a thickener at a different concentration (0.2%-0.5%) to form the gel. Micro-focus x-ray computed tomography of the gel was performed to observe gas cavity formation around the specimen. The insoluble salt layer formed on the specimen surface were analyzed by scanning electron microscopy with energy-dispersive x-ray spectroscopy, and Raman spectroscopy. As results, gas cavity formation was observed for all specimens. At day 7, the gas cavity volume was the highest at 0.5% thickener gel followed by 0.3% thickener gel. The insoluble salts were classified into three types based on their morphology; plate-like, granular-like, and crater-like salts. The crater-like salts were observed to cover 16.8 ± 3.9% of the specimen surface immersed in the 0.5% thickener gel, at the specimen area contacted to the gas cavity. The crater-like salts were composed by Mg hydroxide and carbonate from the deepest to the top layer. In plate-like or granular-like salts, Mg carbonate was formed in the deepest layer, but phosphates and carbonates, mainly containing calcium not Mg, were formed on the surface layer. In conclusion, the increase in the thickener concentration increased the gas cavity volume contacting to the specimen surface, resulting in the increase in precipitation of Mg hydroxide and carbonate, composing crater-like salts. Mg hydroxide and carbonate precipitation suggests the local increase in OH-concentration, which may be attributed to the decrease in diffusion rate.


Assuntos
Magnésio , Sais , Corrosão , Magnésio/química , Carbonatos , Hidróxidos , Ligas/química
5.
ACS Biomater Sci Eng ; 9(3): 1296-1306, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36848229

RESUMO

Subunit vaccines offer numerous attractive features, including good safety profiles and well-defined components with highly characterized properties because they do not contain whole pathogens. However, vaccine platforms based on one or few selected antigens are often poorly immunogenic. Several advances have been made in improving the effectiveness of subunit vaccines, including nanoparticle formulation and/or co-administration with adjuvants. Desolvation of antigens into nanoparticles is one approach that has been successful in eliciting protective immune responses. Despite this advance, damage to the antigen structure by desolvation can compromise the recognition of conformational antigens by B cells and the subsequent humoral response. Here, we used ovalbumin as a model antigen to demonstrate enhanced efficacy of subunit vaccines by preserving antigen structures in nanoparticles. An altered antigen structure due to desolvation was first validated by GROMACS and circular dichroism. Desolvant-free nanoparticles with a stable ovalbumin structure were successfully synthesized by directly cross-linking ovalbumin or using ammonium sulfate to form nanoclusters. Alternatively, desolvated OVA nanoparticles were coated with a layer of OVA after desolvation. Vaccination with salt-precipitated nanoparticles increased OVA-specific IgG titers 4.2- and 22-fold compared to the desolvated and coated nanoparticles, respectively. In addition, enhanced affinity maturation by both salt precipitated and coated nanoparticles was displayed in contrast to desolvated nanoparticles. These results demonstrate both that salt-precipitated antigen nanoparticles are a potential new vaccine platform with significantly improved humoral immunity and a functional value of preserving antigen structures in vaccine nanoparticle design.


Assuntos
Imunidade Humoral , Nanopartículas , Ovalbumina/farmacologia , Antígenos/farmacologia , Vacinas de Subunidades Antigênicas/farmacologia , Nanopartículas/química
6.
Sci Total Environ ; 862: 160906, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521621

RESUMO

As a high efficiency method for chloride removal, Friedel's salt precipitation (FSP) method has attracted much attention in zero liquid discharge (ZLD) of flue gas desulfurization (FGD) wastewater. This review provides comprehensive knowledge of FSP method for chloride removal through analysis of the evolution, reaction mechanisms and influential factors, and describes the recent research progress. FSP method is a cost-efficient technology to remove chloride from saline wastewater by adding lime and aluminate. Chloride ions react with the precipitants by adsorption or/and ion exchange to form Friedel's salt, which is affected by the reaction conditions including reaction time, temperature, interferential ions, etc. The effluent of this process can be reused as the makeup water of desulfurization tower, and the dechloridation precipitates can be reclaimed as adsorption materials and sludge conditioners. That can not only offset a fraction of the treatment cost, but also avoid secondary pollution, so ZLD of FGD wastewater can be achieved. This paper summarizes the deficiencies and potential improvement measures of FSP method. We believe this technology is a promising way to achieve ZLD of FGD wastewater and other wastewater containing chloride, and expect FSP method would become more mature and be widely applied in hypersaline wastewater treatment in the foreseeable future.


Assuntos
Cloretos , Águas Residuárias , Cloreto de Cálcio , Óxido de Alumínio
7.
Materials (Basel) ; 15(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36079407

RESUMO

Based on laboratory tests, the objective of this study is to assess long-term road performance and to predict deicing longevity of self-ice-melting asphalt pavements containing salt-storage materials. Dry-wet cycles and freeze-thaw cycles were used to treat the specimens at different durations. The long-term road performance of self-ice-melting asphalt mixtures was evaluated by freeze-thaw splitting tests, high-temperature rutting tests, and low-temperature beam bending tests. In addition, the influences of coefficients of void ratio, temperature, vehicle load, crack, and Mafilon (MFL) content on salt precipitation were quantified by conductivity tests, and single consumption of snow and ice melt was quantified by total dissolved solids (TDS) tests. The results show that the long-term water stability, long-term high-temperature stability, and long-term low-temperature crack resistance of self-ice-melting asphalt pavements tended to decrease as the number of dry-wet cycles and freeze-thaw cycles increased. Freeze-thaw cycles exerted deeper influences on the deterioration of road performance than dry-wet cycles, especially on water stability. With increased void ratio and temperature, salt precipitation was accelerated by 1.1 times and 1.5~1.8 times, respectively. Under vehicle loads and cracks, salt precipitation was accelerated by 1.5 times and 1.65 times, respectively. With decreased MFL content, salt precipitation slowed down by 0.54 times. Finally, based on the proportion of each factor relative to the whole life cycle of the pavement, a dicing longevity prediction model was established considering the above factors.

8.
Environ Sci Pollut Res Int ; 29(6): 8650-8664, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34494190

RESUMO

CO2 can be injected into deep saline aquifers for storage, thereby reducing the concentration of CO2 in the atmosphere. When CO2 is injected into the aquifer, salt precipitation may occur, which may impair the injectivity and affect storage safety. In this study, numerical simulation was used to study salt precipitation in heterogeneous anisotropic sandstone aquifers, the feedback effect of salt precipitation on the flow was considered, and the additional pressure increase caused by salt precipitation was evaluated. The results showed that the maximum decrease in formation permeability and the maximum additional pressure buildup caused by salt precipitation reached 88% and 4.91 MPa, respectively. The salinity of the formation water and the maximum additional pressure buildup is approximately proportional when the salinity is low. Once the salinity exceeds a certain value (approximately 20% in this study), the maximum additional pressure buildup increases sharply. As the permeability increases, the additional pressure buildup decreases. When permeability reaches a certain threshold (approximately 5×10-14 m2 in this study), the maximum additional pressure buildup decreases rapidly and changes only slightly as permeability increases. The CO2 injection rate is basically proportional to the maximum additional pressure buildup. When the vertical permeability increases, the additional pressure buildup due to salt precipitation shows a downward trend. The low-permeability interbeds above the CO2 injection well will cause more local salt precipitation near it, which will further cause a greater and wider pressure buildup. The heterogeneity of the formation will greatly enhance salt precipitation, thereby promoting the formation pressure buildup. The formation heterogeneity must be considered in the study of the salt precipitation and its effect on CO2 injection, especially when the formation permeability is low, the CO2 injection rate is high, and the salinity of the formation water is high.


Assuntos
Dióxido de Carbono , Água Subterrânea , Anisotropia , Cloreto de Sódio , Cloreto de Sódio na Dieta
9.
Angew Chem Int Ed Engl ; 60(34): 18845-18851, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34196094

RESUMO

Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5 (OH)8 Cl2 ⋅H2 O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5 (OH)8 Cl2 ⋅H2 O top-layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm-1 even at -70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl- . The eutectic electrolyte enables Zn∥Ti half-cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm-2 . Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at -50 °C, and retain ≈30 % capacity at -70 °C of that at 20 °C.

10.
ACS Nano ; 15(3): 5752-5761, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33683874

RESUMO

Interfacial solar evaporators (ISEs) for seawater desalination have garnered enormous attention in recent decades due to global water scarcity. Despite the progress in the energy conversion efficiency and production rate of ISE, the poor portability of large-area ISE during transportation as well as the clogging of water transport pathways by precipitated salts during operation remain grand challenges for its fielded applications. Here, we designed an ISE with high energy conversion efficiency and shape morphing capability by integrating carbon nanotube (CNT) fillers with a light-responsive shape memory polymer (SMP, cross-linked polycyclooctene (cPCO)). Utilizing the shape memory effect, our ISE can be folded to an origami with 1/9 of its original size to save space for transportation and allow for on-demand unfolding upon sunlight irradiation when deployed in service. In addition, the ISE is equipped with a real-time clogging monitoring function by measuring the capacitance of the electric double layer (EDL) formed at the evaporator/seawater nanointerface. Due to its good energy conversion efficiency, high portability, and clogging monitoring capability, we envisage our ISE as a promising selection in solar evaporation technologies.

11.
Bioprocess Biosyst Eng ; 44(1): 81-92, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32840678

RESUMO

The combined effects of mixed electrolyte species and glucose on oxygen transfer were studied in a bubble column with aqueous solutions. Of particular interest was the presence of electrolytes containing ions which are prone to present solute-solute interactions or to crystallize. Without and at low concentration of glucose (≤ 5 g/L), the increasing concentration of electrolytes (nominal ionic strength: 0-0.43 M), up to a critical value, enhanced the volumetric mass transfer coefficient (kLa) and the availability of specific interfacial area (a), due to the inhibition of bubble coalescence. As the glucose concentration increased (10-40 g/L), the enhancing effects of electrolytes were gradually lost. The glucose interacted with electrolytes, reducing their ability to inhibit coalescence and to enhance the kLa. Salt crystallization occurred independently of the addition of glucose; however, it did not have significant effect on mass transfer. Finally, the changes in physicochemical properties were highly collinear with composition variables.


Assuntos
Meios de Cultura/química , Glucose/química , Oxigênio/química , Eletrólitos/química
12.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 29(2): 159-162, 2017 Apr 11.
Artigo em Chinês | MEDLINE | ID: mdl-29469318

RESUMO

OBJECTIVE: To optimize the extraction methods of mitochondrial genome DNA (mtDNA) of Oncomelania hupen- sis. METHODS: The pyrolysis, protein K variable-temperature digestion and high-concentration potassium acetate purification were applied to optimize the high-concentration-salt precipitation method, and then the optimized method was compared with two common extraction methods, the sucrose density gradient centrifugation method and traditional high-concentration-salt precipitation method. The mtDNA samples were identified by using spectrophotometry, agarose gel electrophoresis and the amplification products of COX1. The nuclear DNA contamination was tested by the amplification products of ITS. RESULTS: The concentration and yield of the improved method was significantly higher than those of the traditional method (F = 3 032.65, 10 185.00, both P < 0.01). The mtDNA samples extracted were essentially free of nuclear DNA and protein, meeting PCR, sequence analysis and other molecular biology research requirements. CONCLUSIONS: The improved high-concentration-salt precipitation method for isolating mtDNA is simple, and it has high yield and low cost. The extracted mtDNA can meet relevant analysis requirements.


Assuntos
DNA Mitocondrial/isolamento & purificação , Caramujos/genética , Animais , Centrifugação com Gradiente de Concentração , Precipitação Química , Eletroforese em Gel de Ágar , Reação em Cadeia da Polimerase
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-514210

RESUMO

Objective To optimize the extraction methods of mitochondrial genome DNA(mtDNA)of Oncomelania hupen-sis. Methods The pyrolysis,protein K variable-temperature digestion and high-concentration potassium acetate purification were applied to optimize the high-concentration-salt precipitation method,and then the optimized method was compared with two common extraction methods,the sucrose density gradient centrifugation method and traditional high-concentration-salt pre-cipitation method. The mtDNA samples were identified by using spectrophotometry,agarose gel electrophoresis and the amplifi-cation products of COX1. The nuclear DNA contamination was tested by the amplification products of ITS. Results The concen-tration and yield of the improved method was significantly higher than those of the traditional method(F=3032.65,10185.00, both P<0.01). The mtDNA samples extracted were essentially free of nuclear DNA and protein,meeting PCR,sequence analy-sis and other molecular biology research requirements. Conclusions The improved high-concentration-salt precipitation meth-od for isolating mtDNA is simple,and it has high yield and low cost. The extracted mtDNA can meet relevant analysis require-ments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA