Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(9): e202303092, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38057492

RESUMO

While great achievements have been made in the development of mechanically robust nanocomposite hydrogels, incorporating multiple interactions on the bases of two demensional inorganic cross-linkers to construct self-strengthening hydrogels has rarely been investigated. To this end, we propose here a new method for the coupling the dynamic covalent bonds and non-covalent interactions within a pseudo double-network system. The pseudo first network, formed through the Schiff Base reation between Tris-modified layered double hydroxides (Tris-LDHs) and oxidized dextran (ODex), is linked to the second network built upon non-covalent interactions between Tris-LDHs and poly(acrylamide-co-2-acrylamido-2-methyl-propanesulfonate) (p-(AM-co-AMPS). The swelling and mechanical properties of the resulting hydrogels have been investigated as a function of the ODex and AMPS contents. The as-prepared hydrogel can swell to 420 times of its original size and retain more than 99.9 wt.% of water. Mechanical tests show that the hydrogel can bear 90 % of compression and is able to be stretched to near 30 times of its original length. Cyclic tensile tests reveal that the hydrogels are capable of self-strengthening after mechanical training. The unique energy dissipation mechanism based on the dynamic covalent and non-covalent interactions is considered to be responsible for the outstanding swelling and mechanical performances.

2.
Molecules ; 27(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080272

RESUMO

The low-viscosity adhesive that is used to bond composite restorative materials to the tooth is readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite/tooth interface, demineralize the tooth, and further erode the adhesive. This paper presents the preparation and characterization of a low-crosslink-density hydrophilic adhesive that capitalizes on sol-gel reactions and free-radical polymerization to resist hydrolysis and provide enhanced mechanical properties in wet environments. Polymerization behavior, water sorption, and leachates were investigated. Dynamic mechanical analyses (DMA) were conducted using water-saturated adhesives to mimic load transfer in wet conditions. Data from all tests were analyzed using appropriate statistical tests (α = 0.05). The degree of conversion was comparable for experimental and control adhesives at 88.3 and 84.3%, respectively. HEMA leachate was significantly lower for the experimental (2.9 wt%) compared to control (7.2 wt%). After 3 days of aqueous aging, the storage and rubbery moduli and the glass transition temperature of the experimental adhesive (57.5MPa, 12.8MPa, and 38.7 °C, respectively) were significantly higher than control (7.4MPa, 4.3 MPa, and 25.9 °C, respectively). The results indicated that the autonomic sol-gel reaction continues in the wet environment, leading to intrinsic reinforcement of the polymer network, improved hydrolytic stability, and enhanced mechanical properties.


Assuntos
Adesivos , Metacrilatos , Resinas Compostas/química , Hidrólise , Teste de Materiais , Metacrilatos/química , Polimerização , Água/química
3.
ACS Appl Mater Interfaces ; 14(2): 3344-3355, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34989225

RESUMO

A covalent adaptable network can endow rubber materials with recyclability and reprocessability and is expected to alleviate black pollution caused by end-of-life rubber. However, the loss of traditional vulcanization systems severely sacrifices their strength, and the tensile strength in the current study rarely exceeds 10 MPa unless fillers are added. In this work, we proposed a self-strengthening process based on dual-dynamic units (imine and disulfide), briefly, under heating, phenylsulfur radicals generated from aromatic disulfide bonds can react with double bonds (mostly vinyl) and/or couple with allyl sites, thus reforming a stronger cross-linked network. The neighboring imine unit is not affected and provides excellent thermal reprocessability and chemical recyclability. The result shows that the tensile strength can reach 19.27 MPa via self-strengthening without adding fillers or any other additives, and this ultra-high-strength is much higher than those of all known recyclable polybutadiene-based rubber materials. In addition, the material also has malleability, shape memory, and self-welding properties. By doping carbon nanotubes, a recyclable conductive composite can also be achieved. In general, we envision that this enhanced strategy has great potential to be generalized for all elastomers containing double bonds (such as styrene-butadiene rubber, nitrile rubber, isoprene rubber, and their derivatives). The reprocessability and self-welding are practical for on-site assembly or repair of composite parts and extend the service life of materials.

4.
PNAS Nexus ; 1(3): pgac139, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741439

RESUMO

In response to environmental stressors, biological systems exhibit extraordinary adaptive capacity by turning destructive environmental stressors into constructive factors; however, the traditional engineering materials weaken and fail. Take the response of polymers to an aquatic environment as an example: Water molecules typically compromise the mechanical properties of the polymer network in the bulk and on the interface through swelling and lubrication, respectively. Here, we report a class of 3D-printable synthetic polymers that constructively strengthen their bulk and interfacial mechanical properties in response to the aquatic environment. The mechanism relies on a water-assisted additional cross-linking reaction in the polymer matrix and on the interface. As such, the typically destructive water can constructively enhance the polymer's bulk mechanical properties such as stiffness, tensile strength, and fracture toughness by factors of 746% to 790%, and the interfacial bonding by a factor of 1,000%. We show that the invented polymers can be used for soft robotics that self-strengthen matrix and self-heal cracks after training in water and water-healable packaging materials for flexible electronics. This work opens the door for the design of synthetic materials to imitate the constructive adaptation of biological systems in response to environmental stressors, for applications such as artificial muscles, soft robotics, and flexible electronics.

5.
Int J Biol Macromol ; 184: 109-117, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119541

RESUMO

A self-strengthening coating with silver nanoparticles (Ag NPs) doped chitosan (CHI) and sodium alginate (SA) polyelectrolytes was constructed on the surface of polydopamine (PDA) coated Ti substrate by a layer-by-layer assembly method. The PDA coating exhibited an excellent bond with Ti substrate, and also can uniformly deposit Ag NPs via a mild method without introducing any exogenous reductant. The CHI coating was assembled through a spin-coating method for controlling Ag+ release. The SA was introduced to enhance the anticorrosion performance by forming calcium alginate (CA) in a corrosive medium. The corrosion protection was investigated with electrochemical impedance spectroscopy and polarization curves tests in fluorine-containing artificial saliva. During immersion, the charge-transfer resistance and the protection efficiency (ŋ) presented a continuous increase with the immersion time, demonstrating that this coating possessed a remarkable self-strengthening capability, and the compositions of the outermost film changed from SA to CA with the Ca2+ cations of the corrosive medium as a crosslinker by SEM and EDS analysis. Furthermore, the ŋ remained up to 96.8% after immersion of 30 days, and then the coating also displayed a distinct inhibition zone on S. mutans. These results prove this coating possesses an excellent anticorrosion performance and antibacterial property.


Assuntos
Alginatos/química , Antibacterianos/farmacologia , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Titânio/farmacologia , Animais , Antibacterianos/química , Linhagem Celular , Corrosão , Indóis/química , Teste de Materiais , Nanopartículas Metálicas , Camundongos , Polieletrólitos/química , Polímeros/química , Saliva Artificial , Streptococcus mutans/efeitos dos fármacos , Propriedades de Superfície , Titânio/química
6.
Angew Chem Int Ed Engl ; 60(15): 8406-8409, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33417288

RESUMO

Mechanochromic elastomers that exhibit force-induced cross-linking reactions in the bulk state are introduced. The synthesis of segmented polyurethanes (SPUs) that contain difluorenylsuccinonitrile (DFSN) moieties in the main chain and methacryloyl groups in the side chains was carried out. DFSN was selected as the mechanophore because it dissociates under mechanical stimuli to form pink cyanofluorene (CF) radicals, which can also initiate the radical polymerization of methacrylate monomers. The obtained elastomers generated CF radicals and changed color by compression or extension; they also became insoluble due to the mechanically induced cross-linking reactions. Additionally, an SPU containing diphenylmethane units also exhibited highly sensitive mechanofluorescence. To the best of our knowledge, this is the first report to demonstrate damage detection ability and changes in the mechanical properties of bulk elastomers induced by simple compression or extension.

7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431680

RESUMO

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.


Assuntos
Celulose/biossíntese , Engenharia Química/métodos , Cloroplastos/efeitos da radiação , Glucose/biossíntese , Impressão Tridimensional/instrumentação , Celulose/química , Cloroplastos/química , Cloroplastos/fisiologia , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Glucose/química , Humanos , Isocianatos/química , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/efeitos da radiação , Robótica/métodos , Spinacia oleracea/química , Spinacia oleracea/efeitos da radiação
8.
Adv Mater ; 32(52): e2006986, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33206452

RESUMO

The extracellular matrix (ECM) undergoes dynamic remodeling and progressive stiffening during tissue regeneration and disease progression. However, most of the artificial ECMs and in vitro disease models are mechanically static. Here, a self-strengthening polymer coating mimicking the dynamic nature of native ECM is designed to study the cellular response to dynamic biophysical cues and promote cell mechanical sensitive response. Spiropyran (SP) is utilized as dynamic anchor group to regulate the strength of cell adhesive peptide ligands. Benefiting from spontaneous thermal merocyanine-to-spiropyran (MC-SP) isomerization, the resulting self-responsive coating displays dynamic self-strengthening of interfacial interactions. Comparing with the static and all of the previous dynamic artificial ECMs, cells on this self-responsive surface remodel the weakly bonded MC-based coatings to activate α5ß1 integrin and Rac signaling in the early adhesion stage. The subsequent MC-to-SP conversion strengthens the ligand-integrin interaction to further activate αvß3 integrin and RhoA/ROCK signaling in the latter stage. This sequential process enhances cellular mechanotransduction as well as the osteogenic differentiation of mesenchymal stem cells (MSCs). It is worth emphasizing that the self-strengthening occurs spontaneously in the absence of any stimulus, making it especially useful for implanted scaffolds in regenerative medicine.


Assuntos
Mecanotransdução Celular , Materiais Biomiméticos/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Acta Biomater ; 83: 130-139, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366133

RESUMO

Resin-based composite has overtaken dental amalgam as the most popular material for direct restorative dentistry. In spite of this popularity the clinical lifetime of composite restorations is threatened by recurrent decay. Degradation of the adhesive leads to gaps at the composite/tooth interface-bacteria, bacterial by-products and fluids infiltrate the gaps leading to recurrent decay and composite restoration failure. The durability of resin-dentin bonds is a major problem. We address this problem by synthesizing silyl-functionalized BisGMA (e.g., silyl-BisGMA), formulating dental adhesives with the new monomer and determining the physicochemical properties and leaching characteristics of the silyl-BisGMA adhesives. Silyl-BisGMA was synthesized by stoichiometric amounts of BisGMA and 3-isocyanatopropyl trimethoxysilane (IPTMS). The control adhesive was a mixture based on HEMA/BisGMA (45/55, w/w). In the experimental formulations, BisGMA was partially or completely replaced by silyl-BisGMA. Water miscibility, polymerization behavior (Fourier transform infrared spectroscopy, FTIR), thermal property (modulated differential scanning calorimetry, MDSC), mechanical properties in dry and wet conditions (dynamic mechanical analysis, DMA), and leached species (HPLC) were investigated. Data from all tests were submitted to appropriate statistical analysis (α = 0.05). Silyl-BisGMA-containing adhesives exhibited comparable water miscibility, lower viscosities, and significantly improved degree of conversion of CC bond as compared to the control. After 4 weeks aqueous aging, the glass transition temperature and rubbery moduli of the experimental copolymers were significantly greater than the control (p < 0.05). HPLC results indicated a substantial reduction of leached HEMA (up to 99 wt%) and BisGMA (up to 90 wt%). By introducing silyl-functional group, the new BisGMA derivative exhibited potential as a monomer that can lead to dental adhesives with improved mechanical properties and reduced leaching under conditions relevant to the oral environment. STATEMENT OF SIGNIFICANCE: The low-viscosity adhesive that bonds the composite to the tooth (enamel and dentin) is intended to seal and stabilize the composite/tooth interface, but it degrades leading to a breach at the composite/tooth margin. As the most popular crosslinking monomer in adhesives, Bisphenol A-glycerolate dimethacrylate (BisGMA) has limitations, e.g. susceptible to hydrolysis and concomitant property degradation. A methoxysilyl-functionalized BisGMA derivative (silyl-BisGMA) was introduced in this work to respond to these limitations. Our results indicated that by introducing silyl-BisGMA, higher crosslinked networks were obtained without sacrificing the homogeneity, and the leached amount of HEMA was reduced up to 99%. This novel resin offers potential benefits including prolonging the functional lifetime of dental resin materials.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/química , Cimentos Dentários/química
10.
Acta Biomater ; 67: 111-121, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29229545

RESUMO

Ingress of bacteria and fluids at the interfacial gaps between the restorative composite biomaterial and the tooth structure contribute to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of bacteria. Neutralizing the microenvironment at the tooth/composite interface offers promise for reducing the damage provoked by cariogenic and aciduric bacteria. We address this problem by designing a dental adhesive composed of hybrid network to provide buffering and autonomous strengthening simultaneously. Two amino functional silanes, 2-hydroxy-3-morpholinopropyl (3-(triethoxysilyl)propyl) carbamate and 2-hydroxy-3-morpholinopropyl (3-(trimethoxysilyl)propyl) carbamate were synthesized and used as co-monomers. Combining free radical initiated polymerization (polymethacrylate-based network) and photoacid-induced sol-gel reaction (polysiloxane) results in the hybrid network formation. Resulting formulations were characterized with regard to real-time photo-polymerization, water sorption, leached species, neutralization, and mechanical properties. Results from real-time FTIR spectroscopic studies indicated that ethoxy was less reactive than methoxy substituent. The neutralization results demonstrated that the methoxy-containing adhesives have acute and delayed buffering capabilities. The mechanical properties of synthetic copolymers tested in dry conditions were improved via condensation reaction of the hydrolyzed organosilanes. The leaching from methoxy containing copolymers was significantly reduced. The sol-gel reaction provided a chronic and persistent reaction in wet condition-performance that offers potential for reducing secondary decay and increasing the functional lifetime of dental adhesives. STATEMENT OF SIGNIFICANCE: The interfacial gaps between the restorative composite biomaterial and the tooth structure contributes to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of more cariogenic and aciduric bacteria. This paper reports a novel, synthetic resin that provides buffering capability and autonomous strengthening characteristics. In this work, two amino functional silanes were synthesized and the effect of alkoxy substitutions on the photoacid-induced sol-gel reaction was investigated. We evaluated the neutralization capability (monitoring the pH of lactic acid solution) and the autonomous strengthening property (monitoring the mechanical properties of the hybrid copolymers under wet conditions and quantitatively analyzing the leachable species by HPLC). The novel resin investigated in this study offers the potential benefits of reducing the risk of recurrent decay and prolonging the functional lifetime of dental adhesives.


Assuntos
Reagentes de Ligações Cruzadas/química , Cimentos Dentários/química , Teste de Materiais/métodos , Soluções Tampão , Cromatografia Líquida de Alta Pressão , Colagem Dentária , Módulo de Elasticidade , Concentração de Íons de Hidrogênio , Cinética , Polimerização , Silanos/química , Água/química , Molhabilidade
11.
Acta Biomater ; 35: 138-52, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883773

RESUMO

Chemical and enzymatic hydrolysis provoke a cascade of events that undermine methacrylate-based adhesives and the bond formed at the tooth/composite interface. Infiltration of noxious agents, e.g. enzymes, bacteria, and so forth, into the spaces created by the defective bond will ultimately lead to failure of the composite restoration. This paper reports a novel, synthetic resin that provides enhanced hydrolytic stability as a result of intrinsic reinforcement of the polymer network. The behavior of this novel resin, which contains γ-methacryloxyproyl trimethoxysilane (MPS) as its Si-based compound, is reminiscent of self-strengthening properties found in nature. The efforts in this paper are focused on two essential aspects: the visible-light irradiation induced (photoacid-induced) sol-gel reaction and the mechanism leading to intrinsic self-strengthening. The FTIR band at 2840cm(-1) corresponding to CH3 symmetric stretch in -Si-O-CH3 was used to evaluate the sol-gel reaction. Results from the real-time FTIR indicated that the newly developed resin showed a limited sol-gel reaction (<5%) during visible-light irradiation, but after 48h dark storage, the reaction was over 65%. The condensation of methoxysilane mainly occurred under wet conditions. The storage moduli and glass transition temperature of the copolymers increased in wet conditions with the increasing MPS content. The cumulative amounts of leached species decreased significantly when the MPS-containing adhesive was used. The results suggest that the polymethacrylate-based network, which formed first as a result of free radical initiated polymerization, retarded the photoacid-induced sol-gel reaction. The sol-gel reaction provided a persistent, intrinsic reinforcement of the polymer network in both neutral and acidic conditions. This behavior led to enhanced mechanical properties of the dental adhesives under conditions that simulate the wet, oral environment. STATEMENT OF SIGNIFICANCE: A self-strengthening dental adhesive system was developed through a dual curing process, which involves the free radical photopolymerization followed by slow hydrolysis and condensation (photoacid-induced sol-gel reaction) of alkoxylsilane groups. The concept of "living" photoacid-induced sol-gel reaction with visible-light irradiation was confirmed in the polymer. The sol-gel reaction was retarded by the polymethacrylate network, which was generated first; the network extended the life and retained the activity of silanol groups. The self-strengthening behavior was evaluated by monitoring the mechanical properties of the hybrid copolymers under wet conditions. The present research demonstrates the sol-gel reaction in highly crosslinked network as a potentially powerful strategy to prolong the functional lifetime of engineered biomaterials in wet environments.


Assuntos
Materiais Biomiméticos/química , Cimentos Dentários/química , Teste de Materiais , Dentina/química , Módulo de Elasticidade , Polimerização , Resinas Sintéticas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA