Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259296

RESUMO

Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.

2.
Methods Mol Biol ; 2760: 463-477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468104

RESUMO

By applying sensory photoreceptors, optogenetics realizes the light-dependent control of cellular events and state. Given reversibility, noninvasiveness, and exquisite spatiotemporal precision, optogenetic approaches enable innovative use cases in cell biology, synthetic biology, and biotechnology. In this chapter, we detail the implementation of the pREDusk, pREDawn, pCrepusculo, and pAurora optogenetic circuits for controlling bacterial gene expression by red and blue light, respectively. The protocols provided here guide the practical use and multiplexing of these circuits, thereby enabling graded protein production in bacteria at analytical and semi-preparative scales.


Assuntos
Bactérias , Luz Azul , Optogenética/métodos , Expressão Gênica , Luz
3.
J Mol Biol ; 436(5): 168257, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657609

RESUMO

Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue. Bacteriophytochrome photoreceptors sense the ratio of red and far-red light to regulate the activity of enzymatic effector modules. The recombination of bacteriophytochrome photosensor modules with cyclase effectors underlies photoactivated adenylyl cyclases (PAC) that catalyze the synthesis of the ubiquitous second messenger 3', 5'-cyclic adenosine monophosphate (cAMP). Via homologous exchanges of the photosensor unit, we devised novel PACs, with the variant DmPAC exhibiting 40-fold activation of cyclase activity under red light, thus surpassing previous red-light-responsive PACs. Modifications of the PHY tongue modulated the responses to red and far-red light. Exchanges of the cyclase effector offer an avenue to further enhancing PACs but require optimization of the linker to the photosensor. DmPAC and a derivative for 3', 5'-cyclic guanosine monophosphate allow the manipulation of cyclic-nucleotide-dependent processes in mammalian cells by red light. Taken together, we advance the optogenetic control of second-messenger signaling and provide insight into the signaling and design of bacteriophytochrome receptors.


Assuntos
Adenilil Ciclases , AMP Cíclico , Deinococcus , Fotorreceptores Microbianos , Fitocromo , Proteínas Recombinantes de Fusão , Animais , Adenilil Ciclases/química , Adenilil Ciclases/genética , AMP Cíclico/química , Luz , Optogenética , Transdução de Sinais , Engenharia de Proteínas , Fitocromo/química , Fitocromo/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética
4.
Front Bioeng Biotechnol ; 10: 1029403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312534

RESUMO

Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.

5.
ACS Synth Biol ; 11(10): 3482-3492, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36129831

RESUMO

Sensory photoreceptors mediate numerous light-dependent adaptations across organisms. In optogenetics, photoreceptors achieve the reversible, non-invasive, and spatiotemporally precise control by light of gene expression and other cellular processes. The light-oxygen-voltage receptor PAL binds to small RNA aptamers with sequence specificity upon blue-light illumination. By embedding the responsive aptamer in the ribosome-binding sequence of genes of interest, their expression can be downregulated by light. We developed the pCrepusculo and pAurora optogenetic systems that are based on PAL and allow to down- and upregulate, respectively, bacterial gene expression using blue light. Both systems are realized as compact, single plasmids that exhibit stringent blue-light responses with low basal activity and up to several 10-fold dynamic range. As PAL exerts light-dependent control at the RNA level, it can be combined with other optogenetic circuits that control transcription initiation. By integrating regulatory mechanisms operating at the DNA and mRNA levels, optogenetic circuits with emergent properties can thus be devised. As a case in point, the pEnumbra setup permits to upregulate gene expression under moderate blue light whereas strong blue light shuts off expression again. Beyond providing novel signal-responsive expression systems for diverse applications in biotechnology and synthetic biology, our work also illustrates how the light-dependent PAL-aptamer interaction can be harnessed for the control and interrogation of RNA-based processes.


Assuntos
Aptâmeros de Nucleotídeos , RNA Mensageiro/genética , Aptâmeros de Nucleotídeos/genética , Optogenética , Luz , Bactérias , RNA , Oxigênio
6.
ACS Synth Biol ; 11(10): 3354-3367, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35998606

RESUMO

In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors. Here, we apply this insight to reprogram two widely used setups for bacterial gene expression from blue-light to red-light control. The resultant pREDusk and pREDawn systems allow gene expression to be regulated down and up, respectively, uniformly under red light by 100-fold or more. Both setups are realized as portable, single plasmids that encode all necessary components including the biliverdin-producing machinery. The triggering by red light affords high spatial resolution down to the single-cell level. As pREDusk and pREDawn respond sensitively to red light, they support multiplexing with optogenetic systems sensitive to other light colors. Owing to the superior tissue penetration of red light, the pREDawn system can be triggered at therapeutically safe light intensities through material layers, replicating the optical properties of the skin and skull. Given these advantages, pREDusk and pREDawn enable red-light-regulated expression for diverse use cases in bacteria.


Assuntos
Fitocromo , Histidina Quinase/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Biliverdina , Optogenética , Luz , Bactérias/genética , Monoéster Fosfórico Hidrolases
8.
J Mol Biol ; 433(15): 167107, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34146595

RESUMO

Sensory photoreceptors enable organisms to adjust their physiology, behavior, and development in response to light, generally with spatiotemporal acuity and reversibility. These traits underlie the use of photoreceptors as genetically encoded actuators to alter by light the state and properties of heterologous organisms. Subsumed as optogenetics, pertinent approaches enable regulating diverse cellular processes, not least gene expression. Here, we controlled the widely used Tet repressor by coupling to light-oxygen-voltage (LOV) modules that either homodimerize or dissociate under blue light. Repression could thus be elevated or relieved, and consequently protein expression was modulated by light. Strikingly, the homodimeric RsLOV module from Rhodobacter sphaeroides not only dissociated under light but intrinsically reacted to temperature. The limited light responses of wild-type RsLOV at 37 °C were enhanced in two variants that exhibited closely similar photochemistry and structure. One variant improved the weak homodimerization affinity of 40 µM by two-fold and thus also bestowed light sensitivity on a receptor tyrosine kinase. Certain photoreceptors, exemplified by RsLOV, can evidently moonlight as temperature sensors which immediately bears on their application in optogenetics and biotechnology. Properly accounted for, the temperature sensitivity can be leveraged for the construction of signal-responsive cellular circuits.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/metabolismo , Rhodobacter sphaeroides/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Optogenética , Oxigênio/metabolismo , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores Proteína Tirosina Quinases , Proteínas Repressoras/genética , Rhodobacter sphaeroides/química , Temperatura
9.
Front Plant Sci ; 12: 663751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108981

RESUMO

Phytochrome photoreceptors regulate vital adaptations of plant development, growth, and physiology depending on the ratio of red and far-red light. The light-triggered Z/E isomerization of a covalently bound bilin chromophore underlies phytochrome photoconversion between the red-absorbing Pr and far-red-absorbing Pfr states. Compared to bacterial phytochromes, the molecular mechanisms of signal propagation to the C-terminal module and its regulation are little understood in plant phytochromes, not least owing to a dearth of structural information. To address this deficit, we studied the Arabidopsis thaliana phytochrome A (AtphyA) at full length by cryo-electron microscopy (cryo-EM). Following heterologous expression in Escherichia coli, we optimized the solvent conditions to overcome protein aggregation and thus obtained photochemically active, near-homogenous AtphyA. We prepared grids for cryo-EM analysis of AtphyA in its Pr state and conducted single-particle analysis. The resulting two-dimensional class averages and the three-dimensional electron density map at 17 Å showed a homodimeric head-to-head assembly of AtphyA. Docking of domain structures into the electron density revealed a separation of the AtphyA homodimer at the junction of its photosensor and effector modules, as reflected in a large void in the middle of map. The overall architecture of AtphyA resembled that of bacterial phytochromes, thus hinting at commonalities in signal transduction and mechanism between these receptors. Our work paves the way toward future studies of the structure, light response, and interactions of full-length phytochromes by cryo-EM.

10.
J Mol Biol ; 432(16): 4327-4340, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32534065

RESUMO

Plant phytochromes enable vital adaptations to red and far-red light. At the molecular level, these responses are mediated by light-regulated interactions between phytochromes and partner proteins, foremost the phytochrome-interacting factors (PIF). Although known for decades, quantitative analyses of these interactions have long been sparse. To address this deficit, we here studied by an integrated fluorescence-spectroscopic approach the equilibrium and kinetics of Arabidopsis thaliana phytochrome B binding to a tetramerized PIF6 variant. Several readouts consistently showed the stringently light-regulated interaction to be little affected by PIF tetramerization. Analysis of the binding kinetics allowed the determination of bimolecular association and unimolecular dissociation rate constants as a function of light. Unexpectedly, the stronger affinity of A. thaliana phytochrome B under red light relative to far-red light is entirely due to accelerated association rather than decelerated dissociation. The association reaction under red light is highly efficient and only 3-fold slower than the diffusion limit. The present findings pertain equally to the analysis of signal transduction in plants and to the biotechnological application of phytochromes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fitocromo B/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Transferência de Energia , Polarização de Fluorescência , Cinética , Transdução de Sinal Luminoso , Fitocromo B/química , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Espectrometria de Fluorescência
11.
Protein Sci ; 28(11): 1923-1946, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31397927

RESUMO

Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.


Assuntos
Histidina Quinase/metabolismo , Fotorreceptores Microbianos/metabolismo , Transdução de Sinais , Histidina Quinase/química , Fosforilação , Fotorreceptores Microbianos/química
12.
Methods Enzymol ; 624: 227-248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31370931

RESUMO

Living organisms exhibit a wide range of intrinsic adaptive responses to incident light. Likewise, in optogenetics, biological systems are tailored to initiate predetermined cellular processes upon light exposure. As genetically encoded, light-gated actuators, sensory photoreceptors are at the heart of these responses in both the natural and engineered scenarios. Upon light absorption, photoreceptors enter a series of generally rapid photochemical reactions leading to population of the light-adapted signaling state of the receptor. Notably, this state persists for a while before thermally reverting to the original dark-adapted resting state. As a corollary, the inactivation of photosensitive biological circuits upon light withdrawal can exhibit substantial inertia. Intermittent illumination of suitable pulse frequency can hence maintain the photoreceptor in its light-adapted state while greatly reducing overall light dose, thereby mitigating adverse side effects. Moreover, several photoreceptor systems may be actuated sequentially with a single light color if they sufficiently differ in their inactivation kinetics. Here, we detail the construction of programmable illumination devices for the rapid and parallelized testing of biological responses to diverse lighting regimes. As the technology is based on open electronics and readily available, inexpensive components, it can be adopted by most laboratories at moderate expenditure. As we exemplify for two use cases, the programmable devices enable the facile interrogation of diverse illumination paradigms and their application in optogenetics and photobiology.


Assuntos
Iluminação/instrumentação , Optogenética/instrumentação , Fotobiologia/instrumentação , Animais , Bactérias/genética , Eletrônica/instrumentação , Desenho de Equipamento , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Humanos , Luz
13.
J Mol Biol ; 431(17): 3029-3045, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31301407

RESUMO

As diffusible second messengers, cyclic nucleoside monophosphates (cNMPs) relay and amplify molecular signals in myriad cellular pathways. The triggering of downstream physiological responses often requires defined cNMP gradients in time and space, generated through the concerted action of nucleotidyl cyclases and phosphodiesterases (PDEs). In an approach denoted optogenetics, sensory photoreceptors serve as genetically encoded, light-responsive actuators to enable the noninvasive, reversible, and spatiotemporally precise control of manifold cellular processes, including cNMP metabolism. Although nature provides efficient photoactivated nucleotidyl cyclases, light-responsive PDEs are scarce. Through modular recombination of a bacteriophytochrome photosensor and the effector of human PDE2A, we previously generated the light-activated, cNMP-specific PDE LAPD. By pursuing parallel design strategies, we here report a suite of derivative PDEs with enhanced amplitude and reversibility of photoactivation. Opposite to LAPD, far-red light completely reverts prior activation by red light in several PDEs. These improved PDEs thus complement photoactivated nucleotidyl cyclases and extend the sensitivity of optogenetics to red and far-red light. More generally, our study informs future efforts directed at designing bacteriophytochrome photoreceptors.


Assuntos
Luz , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/efeitos da radiação , Optogenética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/efeitos da radiação , Animais , Linhagem Celular , AMP Cíclico , GMP Cíclico , Humanos , Canais Iônicos , Modelos Moleculares , Nucleotídeos Cíclicos/química , Diester Fosfórico Hidrolases/química , Fotorreceptores Microbianos , Fitocromo/química , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Transdução de Sinais
14.
Biol Chem ; 400(3): 429-441, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30763033

RESUMO

Cyclic nucleoside monophosphates (cNMP) serve as universal second messengers in signal transduction across prokaryotes and eukaryotes. As signaling often relies on transiently formed microdomains of elevated second messenger concentration, means to precisely perturb the spatiotemporal dynamics of cNMPs are uniquely poised for the interrogation of the underlying physiological processes. Optogenetics appears particularly suited as it affords light-dependent, accurate control in time and space of diverse cellular processes. Several sensory photoreceptors function as photoactivated adenylyl cyclases (PAC) and hence serve as light-regulated actuators for the control of intracellular levels of 3', 5'-cyclic adenosine monophosphate. To characterize PACs and to refine their properties, we devised a test bed for the facile analysis of these photoreceptors. Cyclase activity is monitored in bacterial cells via expression of a fluorescent reporter, and programmable illumination allows the rapid exploration of multiple lighting regimes. We thus probed two PACs responding to blue and red light, respectively, and observed significant dark activity for both. We next engineered derivatives of the red-light-sensitive PAC with altered responses to light, with one variant, denoted DdPAC, showing enhanced response to light. These PAC variants stand to enrich the optogenetic toolkit and thus facilitate the detailed analysis of cNMP metabolism and signaling.


Assuntos
Adenilil Ciclases/metabolismo , Engenharia de Proteínas , Adenilil Ciclases/genética , Adenilil Ciclases/isolamento & purificação , Beggiatoa/enzimologia , Cromatografia Líquida de Alta Pressão , Processos Fotoquímicos , Transdução de Sinais
15.
Structure ; 25(6): 933-938.e3, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28502782

RESUMO

Light-oxygen-voltage (LOV) receptors are sensory proteins controlling a wide range of organismal adaptations in multiple kingdoms of life. Because of their modular nature, LOV domains are also attractive for use as optogenetic actuators. A flavin chromophore absorbs blue light, forms a bond with a proximal cysteine residue, and induces changes in the surroundings. There is a gap of knowledge on how this initial signal is relayed further through the sensor to the effector module. To characterize these conformational changes, we apply time-resolved X-ray scattering to the homodimeric LOV domain from Bacillus subtilis YtvA. We observe a global structural change in the LOV dimer synchronous with the formation of the chromophore photoproduct state. Using molecular modeling, this change is identified as splaying apart and relative rotation of the two monomers, which leads to an increased separation at the anchoring site of the effector modules.


Assuntos
Bacillus subtilis/química , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Espalhamento de Radiação , Transdução de Sinais , Raios X
16.
Methods Mol Biol ; 1596: 287-304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293894

RESUMO

Proteins frequently display modular architecture with several domains and segments connected by linkers. Proper protein functionality hinges on finely orchestrated interactions among these constituent elements. The underlying modularity lends itself to the engineering of hybrid proteins via modular rewiring; novel properties can thus be obtained, provided the linkers connecting the individual elements are conducive to productive interactions. As a corollary, the process of protein engineering often encompasses the generation and screening of multiple linker variants. To aid these steps, we devised the PATCHY method (primer-aided truncation for the creation of hybrid proteins) to readily generate hybrid gene libraries of predefined composition. We applied PATCHY to the mechanistic characterization of hybrid receptors that possess blue-light-regulated histidine kinase activity. Comprehensive sampling of linker composition revealed that catalytic activity and response to light are primarily functions of linker length. Variants with linkers of 7n residues mostly have light-repressed activity but those with 7n + 1 residues mostly have inverted, light-induced activity. We further probed linker length in the context of single residue exchanges that also lead to an inversion of the signal response. As in the original context, activity is only observed for certain periodic linker lengths. Taken together, these results provide mechanistic insight into signaling strategies employed by sensory photoreceptors and sensor histidine kinases. PATCHY represents an adequate and facile method to efficiently generate and probe hybrid gene libraries and to thereby identify key determinants for proper function.


Assuntos
Primers do DNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Histidina Quinase/genética , Luz , Engenharia de Proteínas/métodos , Transdução de Sinais/genética
17.
Methods Mol Biol ; 1408: 93-105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26965118

RESUMO

As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fluorometria/métodos , Luz , Adenilil Ciclases/metabolismo , Animais , AMP Cíclico/análise , GMP Cíclico/análise , Ensaios Enzimáticos/métodos , Escherichia coli/metabolismo , Fluoresceínas/química , Guanilato Ciclase/metabolismo , Humanos , Hidrólise , Optogenética/métodos , Diester Fosfórico Hidrolases/metabolismo
18.
Methods Mol Biol ; 1408: 389-403, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26965138

RESUMO

Sensory photoreceptors underpin optogenetics by mediating the noninvasive and reversible perturbation of living cells by light with unprecedented temporal and spatial resolution. Spurred by seminal optogenetic applications of natural photoreceptors, the engineering of photoreceptors has recently garnered wide interest and has led to the construction of a broad palette of novel light-regulated actuators. Photoreceptors are modularly built of photosensors that receive light signals, and of effectors that carry out specific cellular functions. These modules have to be precisely connected to allow efficient communication, such that light stimuli are relayed from photosensor to effector. The engineering of photoreceptors benefits from a thorough understanding of the underlying signaling mechanisms. This chapter gives a brief overview of key characteristics and signal-transduction mechanisms of sensory photoreceptors. Adaptation of these concepts in photoreceptor engineering has enabled the generation of novel optogenetic tools that greatly transcend the repertoire of natural photoreceptors.


Assuntos
Optogenética/métodos , Engenharia de Proteínas/métodos , Proteínas/genética , Animais , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Luz , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Proteínas/metabolismo , Transdução de Sinais
19.
ACS Synth Biol ; 5(10): 1117-1126, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27002379

RESUMO

Signaling proteins comprise interaction and effector modules connected by linkers. Throughout evolution, these recurring modules have multiply been recombined to produce the present-day plethora of signaling proteins. Likewise, modular recombination lends itself to the engineering of hybrid signal receptors, whose functionality hinges on linker topology, sequence, and length. Often, numerous linkers must be assessed to obtain functional receptors. To expedite linker optimization, we devised the PATCHY strategy (primer-aided truncation for the creation of hybrid proteins) for the facile construction of hybrid gene libraries with defined linker distributions. Empowered by PATCHY, we engineered photoreceptors whose signal response was governed by linker length: whereas blue-light-repressed variants possessed linkers of 7n or 7n+5 residues, variants with 7n+1 residues were blue-light-activated. Related natural receptors predominantly displayed linker lengths of 7n and 7n+5 residues but rarely of 7n+1 residues. PATCHY efficiently explores linker sequence space to yield functional hybrid proteins including variants transcending the natural repertoire of signaling proteins.


Assuntos
Biblioteca Gênica , Fotorreceptores Microbianos/metabolismo , Engenharia de Proteínas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Luz , Alinhamento de Sequência , Análise de Sequência de DNA , Transdução de Sinais
20.
Front Mol Biosci ; 2: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26137467

RESUMO

Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA