Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.366
Filtrar
1.
J Agric Food Chem ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39099138

RESUMO

Synbiotics, the combination of probiotics and prebiotics, are thought to be a pragmatic approach for the treatment of various diseases, including inflammatory bowel disease (IBD). The synergistic therapeutic effects of probiotics and prebiotics remain underexplored. Clostridium tyrobutyricum, a short-chain fatty acid (SCFA) producer, has been recognized as a promising probiotic candidate that can offer health benefits. In this study, the treatment effects of synbiotics containing C. tyrobutyricum and chitooligosaccharides (COSs) on IBD were evaluated. The results indicated that the synbiotic supplement effectively relieved inflammation and restored intestinal barrier function. Additionally, the synbiotic supplement could contribute to the elimination of reactive oxygen species (ROS) and improve the production of SCFAs through the SCFAs-producer of C. tyrobutyricum. Furthermore, such the synbiotic could also regulate the composition of gut microbiota. These findings underscore the potential of C. tyrobutyricum and COSs as valuable living biotherapeutics for the treatment of intestinal-related diseases.

2.
Liver Int ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101371

RESUMO

BACKGROUND AND AIMS: There is increased interest in utilizing dietary interventions to alter the progression of autoimmune diseases. These efforts are driven by associations of gut microbiota/metabolites with levels of short-chain fatty acids (SCFAs). Propionate is a key SCFA that is commonly used as a food preservative and is endogenously generated by bacterial fermentation of non-digestible carbohydrates in the gut. A thesis has suggested that a diet rich in propionate and other SCFAs can successfully modulate autoimmunity. Herein, we investigated the effect of long-term administration of propionylated high-amylose resistant starches (HAMSP) on the course of murine primary biliary cholangitis. MATERIALS AND METHODS: Groups of female ARE-Del mice were fed an HAMSP diet either before or after disease onset. A detailed immunobiological analysis was performed involving autoantibodies and rigorous T-cell phenotyping, including enumeration of T-cell subsets in the spleen, liver, intestinal intraepithelial lymphocytes and lamina propria by flow cytometry. Histopathological scores were used to assess the frequency and severity of liver inflammation and damage to hepatocytes and bile ducts. RESULTS: Our results demonstrate that a long-term propionate-yielding diet re-populated the T-cell pool with decreased naïve and central memory T-cell subsets and an increase in the effector memory T cells in mice. Similarly, long-term HAMSP intake reduced CD4+CD8+ double-positive T cells in intraepithelial lymphocytes and the intestinal lamina propria. Critically, HAMSP consumption led to moderate-to-severe hepatocellular steatosis in ARE-Del mice, independent of the stage of autoimmune cholangitis. CONCLUSIONS: Our data suggest that administration of HAMSP induces both regulatory and effector T cells. Furthermore, HAMSP administration resulted in hepatocellular steatosis. Given the interest in dietary modulation of autoimmunity and because propionate is widely used as a food preservative, these data have significant implications. This study also provides new insights into the immunological and pathological effects of chronic propionate exposure.

3.
Cureus ; 16(7): e63995, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39109116

RESUMO

Microbiome dysbiosis has emerged as a critical factor influencing the outcomes of hematopoietic stem cell transplantation (HSCT). This comprehensive review delves into the intricate relationship between microbiome composition and HSCT outcomes, highlighting the mechanisms through which dysbiosis impacts engraftment, graft-versus-host disease (GVHD), infection rates, and overall survival. The gut microbiome plays a pivotal role in modulating immune responses and maintaining intestinal homeostasis, both of which are crucial for the success of HSCT. This review aims to elucidate the underlying pathways and potential therapeutic strategies to mitigate adverse outcomes associated with microbiome imbalances in HSCT patients. Integrating microbiome modulation strategies such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and antibiotic stewardship into clinical practice can significantly improve patient outcomes and quality of life post-transplantation.

4.
Mol Nutr Food Res ; : e2400274, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091068

RESUMO

SCOPE: This study aims to identify the gut enterotypes that explain differential responses to intervention with whole grain rye by proposing an "enterotype - metabolic" model. METHODS AND RESULTS: A 12-week randomized controlled trial is conducted in Chinese adults, with 79 subjects consuming whole grain products with fermented rye bran (FRB) and 77 consuming refined wheat products in this exploratory post-hoc analysis. Responders or non-responders are identified according to whether blood glucose decreased by more than 10% after rye intervention. Compared to non-responders, responders in FRB have higher baseline Bacteroides (p < 0.001), associated with reduced blood glucose (p < 0.001), increased Faecalibacterium (p = 0.020) and Erysipelotrichaceae_UCG.003 (p = 0.022), as well as deceased 7ß-hydroxysteroid dehydrogenase (p = 0.033) after intervention. The differentiated gut microbiota and metabolites between responders and non-responders after intervention are enriched in aminoacyl-tRNA biosynthesis. CONCLUSION: The work confirms the previously suggested importance of microbial enterotypes in differential responses to whole grain interventions and supports taking enterotypes into consideration for improved efficacy of whole grain intervention for preventing type 2 diabetes. Altered short-chain fatty acids and bile acid metabolism might be a potential mediator for the beneficial effects of whole grain rye on glucose metabolism.

5.
Front Pharmacol ; 15: 1400981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092226

RESUMO

Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.

6.
Pharmacol Res ; 207: 107334, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103131

RESUMO

The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short­chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.

7.
Curr Nutr Rep ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110372

RESUMO

PURPOSE OF REVIEW: This study aims to review the effects of short-chain fatty acids (SCFAs) in regulating the myocardial ischemia-reperfusion injury (MIRI). RECENT FINDINGS: Coronary heart disease (CHD) is a well-known leading cause of death and disability worldwide. Cardiac substrate metabolism plays the determinant role in assessing the severity of heart injury due to the abruptly shifted energy production during the MIRI. Fatty acids are the main energy fuels for the heart, which are classified into long-, medium- and short chain fatty acids by the length of carbon chain. SCFAs are the main metabolites derived from the anaerobic bacterial fermentation of fiber-rich diets, which are shown to play a protective role in cerebrovascular disease previously. Meanwhile, accumulating evidences suggest that SCFAs can also play a crucial role in cardiac energy metabolism. Results of various studies revealed the cardioprotective effects of SCFAs by displaying anti-inflammatory and anti-ferroptotic function, connecting gut-brain neural circuit and regulating the intestinal flora.

8.
Sci China Life Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39110402

RESUMO

Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.

9.
Fitoterapia ; 178: 106150, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089595

RESUMO

Ganoderma lucidum (Curtis) P. Karst.(G. lucidum) is a kind of fungi, which also a traditional Chinese medicine used for "wisdom growth" in China. Triterpenoids from G. lucidum (GLTs) are one of the main active ingredients. Based on the strategy of early intervention on Alzheimer's disease (AD) and the inextricable association between disordered gut microbiota and metabolites with AD, this study aimed to explore the mechanisms of GLTs in the protection against AD via microbiota-gut-brain axis with the aid of network pharmacology. In this study, LC-MS/MS was used to identify the main active ingredients of GLTs. Network pharmacology was used to predict the potential target and validated with Caco-2 cell model. D-galactose was used to induce the slow-onset AD on rats. Metabolomics methods basing on GC-MS combined with 16S rRNA sequencing technology was used to carry out microbiota-gut-metabolomics analysis in order to reveal the potential mechanisms of GLTs in the protection of AD. As results, GLTs showed a protection against AD effect on rats by intervening administration. The mechanisms were inextricably linked to GLTs interference with the balance of gut microbiota and metabolites. The main fecal metabolites involved were short-chain fatty acids and aromatic amino acid metabolites.

10.
Sci Rep ; 14(1): 17867, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090182

RESUMO

Diabetic nephropathy (DN) is a prototypical chronic energy metabolism imbalance disease. The AMPK/Sirt1/PGC-1α signaling pathway plays a pivotal role in regulating energy metabolism throughout the body. Gut microbiota ferment indigestible carbohydrates to produce a variety of metabolites, particularly short-chain fatty acids (SCFAs), which exert positive effects on energy metabolism. However, the potential for SCFAs to ameliorate DN-associated renal injury via the AMPK/Sirt1/PGC-1α pathway remains a matter of debate. In this study, we investigated the effects of sodium butyrate (NaB), a SCFA, on energy metabolism in mice with spontaneous DN at two different doses. Body weight, blood glucose and lipid levels, urinary protein excretion, liver and kidney function, interleukin-6 (IL-6) levels, and the expressions of AMPK, phosphorylated AMPK (p-AMPK), mitofusin 2 (MFN2), optic atrophy 1 (OPA1), and glucagon-like peptide-1 receptor (GLP-1R) were monitored in mice. Additionally, butyrate levels, gut microbiota composition, and diversity in colonic stool were also assessed. Our findings demonstrate that exogenous NaB supplementation can improve hyperglycemia and albuminuria, reduce renal tissue inflammation, inhibit extracellular matrix accumulation and glomerular hypertrophy, and could alter the gut microbiota composition in DN. Furthermore, NaB was found to upregulate the expressions of MFN2, OPA1, p-AMPK, and GLP-1R in DN renal tissue. These results suggest that NaB could improve the composition of gut microbiota in DN, activate the AMPK/Sirt1/PGC-1α signaling pathway, and enhance mitochondrial function to regulate energy metabolism throughout the body. Collectively, our findings indicate that NaB may be a novel therapeutic agent for the treatment of DN.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácido Butírico , Nefropatias Diabéticas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Butírico/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Metabolismo Energético/efeitos dos fármacos , Camundongos Endogâmicos C57BL
12.
mBio ; : e0153324, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953358

RESUMO

Emerging evidence indicates that gut dysbiosis is involved in the pathogenesis of visceral hypersensitivity (VH). However, how gut microbiota contributes to the development of VH is unknown. Here, we sought to examine the signal transduction pathways from gut to dorsal root ganglion (DRG) responsible for this. Therefore, abdominal withdrawal reflex (AWR) scores, fecal output, fecal water content, and total gastrointestinal transit time (TGITT) were assessed in Con rats, VH rats, rats treated with NaB, and VH rats treated with VSL#3. Fecal microbiota and its metabolite (short-chain fatty acids, SCFAs), mast cell degranulation in colon, lincRNA-01028, miR-143, and protease kinase C (PKC) and TRPV1 expression in DRGs were further detected. VH rats showed an increased fecal water content, a shortened TGITT, an increased abundance of Clostridium sensu stricto 1 and increased butyrate in fecal samples, an increased mast cell degranulation, an increased expression of lincRNA-01028, PKC, and TRPV1, and a decreased expression of miR-143 in DRGs compared with control rats, which could be restored by the application of probiotic VSL#3. The above-mentioned detection in rats treated with butyrate was similar to that of VH rats. We further confirm whether butyrate sensitized DRG neurons by a lincRNA-01028, miR-143, and PKC-dependent mechanism via mast cell in vitro. In co-cultures, MCs treated with butyrate elicited a higher TRPV1 current, a higher expression of lincRNA-01028, PKC, and a lower expression of miR-143 in DRG neurons, which could be inhibited by a lincRNA-01028 inhibitor. These findings indicate that butyrate promotes visceral hypersensitivity via mast cell-derived DRG neuron lincRNA-01028-PKC-TRPV1 pathway.IMPORTANCEIrritable bowel syndrome (IBS), characterized by visceral hypersensitivity, is a common gastrointestinal dysfunction syndrome. Although the gut microbiota plays a role in the pathogenesis and treatment of irritable bowel syndrome (IBS), the possible underlying mechanisms are unclear. Therefore, it is of critical importance to determine the signal transduction pathways from gut to DRG responsible for this in vitro and in vivo assay. This study demonstrated that butyrate sensitized TRPV1 in DRG neurons via mast cells in vivo and in vitro by a lincRNA-01028, miR-143, and PKC-dependent mechanism. VH rats similarly showed an increased abundance of Clostridium sensu stricto 1, an increased fecal butyrate, an increased mast cell degranulation, and increased expression of TRPV1 compared with control rats, which could be restored by the application of VSL#3. In conclusion, butyrate produced by the altered intestinal microbiota is associated with increased VH.

13.
Food Chem ; 458: 140180, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38964111

RESUMO

Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38965168

RESUMO

Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, modulate immune cell functions, particularly macrophages. This review explores the potential therapeutic applications of SCFAs in pulmonary fungal infections, a critical concern due to their high mortality rates and antifungal resistance. SCFAs enhance macrophage functions by promoting phagosome-lysosome fusion, increasing reactive oxygen species production, and balancing cytokine responses. Pulmonary fungal infections, caused by pathogens like Aspergillus fumigatus, are prevalent in immunocompromised patients, including those with diabetes, chronic obstructive pulmonary disease, and those on high-dose corticosteroids. SCFAs have shown promise in improving macrophage function in these contexts. However, the application of SCFAs must be balanced against potential side effects, including gut microbiota disruption and metabolic disorders. Further research is needed to optimize SCFA therapy for managing pulmonary fungal infections.

15.
Scand J Med Sci Sports ; 34(7): e14689, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946228

RESUMO

The beneficial effects of physical activity (PA) on gut microbiome have been reported, nevertheless the findings are inconsistent, with the main limitation of subjective methods for assessing PA. It is well accepted that using an objective assessment of PA reduces the measurement error and also allows objective assessment of sedentary behavior (SB). We aimed to study the associations between accelerometer-assessed behaviors (i.e., SB, light-intensity physical activity [LPA] and moderate-to-vigorous physical activity [MVPA]) with the gut microbiome using compositional data analysis, a novel approach that enables to study these behaviors accounting for their inter-dependency. This cross-sectional study included 289 women from the Northern Finland Birth Cohort 1966. Physical activity was measured during 14 days by wrist-worn accelerometers. Analyses based on the combined effect of MVPA and SB, and compositional data analyses in association with the gut microbiome data were performed. The microbial alpha- and beta-diversity were not significantly different between the MVPA-SB groups, and no differentially abundant microorganisms were detected. Compositional data analysis did not show any significant associations between any movement behavior (relative to the others) on microbial alpha-diversity. Butyrate-producing bacteria such as Agathobacter and Lachnospiraceae CAG56 were significantly more abundant when reallocating time from LPA or SB to MVPA (γ = 0.609 and 0.113, both p-values = 0.007). While PA and SB were not associated with microbial diversity, we found associations of these behaviors with specific gut bacteria, suggesting that PA of at least moderate intensity (i.e., MVPA) could increase the abundance of short-chain fatty acid-producing microbes.


Assuntos
Acelerometria , Exercício Físico , Microbioma Gastrointestinal , Comportamento Sedentário , Humanos , Feminino , Microbioma Gastrointestinal/fisiologia , Estudos Transversais , Exercício Físico/fisiologia , Pessoa de Meia-Idade , Finlândia
16.
Front Nutr ; 11: 1403497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966420

RESUMO

Introduction: Resistant starch (RS) has garnered attention for its health benefits, including modulating the gut microbiota and promoting the production of short-chain fatty acids (SCFAs). Methods: This study investigates structural changes of type 3 resistant starch from Canna edulis (CE) during in vitro simulated digestion and explores its health-relevant properties using healthy individuals' fecal microbiota. Results: CE, prepared with a RS content of 59.38%, underwent a comprehensive analysis employing X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). During simulated digestion, XRD analysis demonstrated a significant rise in CE's relative crystallinity from 38.92 to 49.34%. SEM illustrated the transition of CE from a smooth to a rough surface, a notable morphological shift. Post-digestion, CE was introduced into microbial fermentation. Notably, propionic acid and valeric acid levels significantly increased compared to the control group. Furthere more, beneficial Bifidobacterium proliferated while pathogenic Escherichia-Shigella was suppressed. When comparing CE to the well-known functional food fructo-oligosaccharide (FOS), CE showed a specific ability to support the growth of Bifidobacterium and stimulate the production of short-chain fatty acids (SCFAs) without causing lactic acid accumulation. Discussion: CE demonstrates potential as a functional health food, with implications for gut health enhancement and SCFAs production.

17.
Front Pharmacol ; 15: 1409321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070785

RESUMO

Background: Ferroptosis has been proven to contribute to the progression of myocardial ischemia/reperfusion (I/R) injury and can be inhibited or promoted by ATF3. Short-chain fatty acids (SCFAs) have shown benefits in various cardiovascular diseases with anti-inflammatory and antioxidant effects. However, the impact of SCFAs on ferroptosis in ischemic-stimulated cardiomyocytes remains unknown. This study aimed to investigate the effect of SCFAs on cardiomyocyte ferroptosis, the expression of ATF3, and its potential upstream regulators. Methods and results: The expression of ATF3, ferroptosis pathway geneset (FPG), and geneset of potential regulators for ATF3 (GPRA, predicted by the PROMO database) was explored in the public human myocardial infarction single-cell RNA-seq (sma) dataset. Cardiomyocyte data was extracted from the dataset and re-clustered to explore the FPG, ATF3, and GPRA expression patterns in cardiomyocyte subclusters. A dose-dependent toxic experiment was run to detect the suitable dose for SCFA treatment. The erastin-induced ferroptosis model and hypoxia-reoxygenation (H/R) model (10 h of hypoxia followed by 6 h of reoxygenation) were adopted to assess the effect of SCFAs via the CCK8 assay. Gene expression was examined via RT-PCR and western blot. Ferroptosis markers, including lipid peroxides and Fe2+, were detected using the liperfluo and ferroOrange probes, respectively. In the sma dataset, upregulated ferroptosis pathway genes were mainly found in the infarction-stimulated cardiac cells (border zone and fibrotic zone), particularly the cardiomyocytes and adipocytes. The ATF3 and some of its potential transcription factors (VDR, EGR3, PAX5, and SP1) can be regulated by SCFA. SCFA can attenuate erastin-induced lipid peroxidation in cardiomyocytes. SCFA treatment can also reverse erastin-induced Fe2+ increase but may strengthen the Fe2+ in the H/R model. We also precisely defined a ferroptosis subcluster of cardiomyocytes (CM09) that highly expressed FPG, ATF3, and GPRA. Conclusion: The ATF3 and the ferroptosis pathway are elevated in cardiomyocytes of injury-related cardiac regions (border zone, ischemic zone, and fibrotic zone). SCFA can attenuate cardiomyocyte ferroptosis and regulate the expression of ATF3. Our study offers novel insights into the potential targets of SCFAs in the cardiovascular system.

18.
Heliyon ; 10(13): e34092, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071627

RESUMO

The microbiota-gut-brain axis (MGBA) represents a sophisticated communication network between the brain and the gut, involving immunological, endocrinological, and neural mediators. This bidirectional interaction is facilitated through the vagus nerve, sympathetic and parasympathetic fibers, and is regulated by the hypothalamic-pituitary-adrenal (HPA) axis. Evidence shows that alterations in gut microbiota composition, or dysbiosis, significantly impact neurological disorders (NDs) like anxiety, depression, autism, Parkinson's disease (PD), and Alzheimer's disease (AD). Dysbiosis can affect the central nervous system (CNS) via neuroinflammation and microglial activation, highlighting the importance of the microbiota-gut-brain axis (MGBA) in disease pathogenesis. The microbiota influences the immune system by modulating chemokines and cytokines, impacting neuronal health. Synbiotics have shown promise in treating NDs by enhancing cognitive function and reducing inflammation. The gut microbiota's role in producing neurotransmitters and neuroactive compounds, such as short-chain fatty acids (SCFAs), is critical for CNS homeostasis. Therapeutic interventions targeting the MGBA, including dietary modulation and synbiotic supplementation, offer potential benefits for managing neurodegenerative disorders. However, more in-depth clinical studies are necessary to fully understand and harness the therapeutic potential of the MGBA in neurological health and disease.

19.
Nutrients ; 16(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39064811

RESUMO

(1) Background: Dyslipidemia represents a major risk factor for atherosclerosis-driven cardiovascular disease. Emerging evidence suggests a close relationship between cholesterol metabolism and gut microbiota. Recently, we demonstrated that the short-chain fatty acid (SCFA) propionate (PA) reduces serum cholesterol levels through an immunomodulatory mechanism. Here, we investigated the effects of oral PA supplementation on the human serum metabolome and analyzed changes in the serum metabolome in relation to the cholesterol-lowering properties of PA. (2) Methods: The serum metabolome of patients supplemented with either placebo or propionate orally for 8 weeks was assessed using a combination of flow injection analysis-tandem (FIA-MS/MS) as well as liquid chromatography (LC-MS/MS) and mass spectrometry using a targeted metabolomics kit (MxP®Quant 500 kit: BIOCRATES Life Sciences AG, Innsbruck, Austria). A total of 431 metabolites were employed for further investigation in this study. (3) Results: We observed a significant increase in distinct bile acids (GCDCA: fold change = 1.41, DCA: fold change = 1.39, GUDCA: fold change = 1.51) following PA supplementation over the study period, with the secondary bile acid DCA displaying a significant negative correlation with the serum cholesterol levels. (4) Conclusions: Oral supplementation with PA modulates the serum metabolome with a particular impact on the circulatory bile acid profile. Since cholesterol and bile acid metabolism are interconnected, the elevation of the secondary bile acid DCA may contribute to the cholesterol-lowering effect of PA.


Assuntos
Colesterol , Metaboloma , Propionatos , Humanos , Propionatos/sangue , Metaboloma/efeitos dos fármacos , Masculino , Feminino , Colesterol/sangue , Pessoa de Meia-Idade , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Suplementos Nutricionais , Adulto , Espectrometria de Massas em Tandem , Anticolesterolemiantes/farmacologia , Metabolômica/métodos , Método Duplo-Cego , Idoso , Cromatografia Líquida
20.
Microorganisms ; 12(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39065139

RESUMO

The Jinhua pig is well known in China due to its delicious meat. However, because of large litter size, low birth weight always happens. This experiment used this breed as a model to research bacterial evidence leading to growth restriction and provide a possible solution linked to probiotics. In this experiment, the differences in organs indexes, colonic morphology, short chain fatty acid (SCFA) concentrations, microbiome, and transcriptome were detected between piglets in the standard-birth-weight group (SG) and low-birth-weight group (LG) to find potential evidence leading to low birth weight. We found that LG piglets had a lower liver index (p < 0.05), deeper colonic crypt depth (p < 0.05), fewer goblet cells (p < 0.05), and more inflammatory factor infiltration. In addition, differentially expressed genes (DEGs) were mainly enriched in B-cell immunity and glucose metabolism, and LG piglets had lower concentrations of SCFAs, especially butyrate and isobutyrate (p < 0.05). Finally, most of the significantly differentially abundant microbes were fewer in LG piglets, which affected DEG expressions and SCFA concentrations further resulting in worse energy metabolism and immunity. In conclusion, colonic disrupted microbiota may cause worse glucose metabolism, immunity, and SCFA production in LG piglets, and beneficial microbes colonized in SG piglets may benefit these harmful changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA