RESUMO
Toxoplasmosis is a worldwide parasitosis that is usually asymptomatic; cell-mediated immunity, particularly T cells, is a crucial mediator of the immune response against this parasite. Membrane protein expression has been studied for a long time in T lymphocytes, providing vital information to determine functional checkpoints. However, less is known about the role of post-translational modifications in T cell function. Glycosylation plays essential roles during maturation and function; particularly, sialic acid modulation is determinant for accurate T cell regulation of processes like adhesion, cell-cell communication, and apoptosis induction. Despite its importance, the role of T cell sialylation during infection remains unclear. Herein, we aimed to evaluate whether different membrane sialylation motifs are modified in T cells during acute Toxoplasma gondii infection using different lectins. To this end, BALB/c Foxp3EGFP mice were infected with T. gondii, and on days 3, 7, and 10 post-infection, splenocytes were obtained to analyze conventional (Foxp3-) CD4+ and CD8+ populations by flow cytometry. Among the different lectins used for analysis, only Sambucus nigra lectin, which detects sialic acid α2,6 linkages, revealed two distinctive populations (SNBright and SN-/Dim) after infection. Further characterization of CD4+ and CD8+ SN-/Dim lymphocytes showed that these are highly activated cells, with a TEf/EM or TCM phenotype that produce high IFN-γ levels, a previously undescribed cell state. This work demonstrates that glycan membrane analysis in T cells reveals previously overlooked functional states by evaluating only protein expression.
Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Camundongos Endogâmicos BALB C , Toxoplasma , Toxoplasmose , Animais , Linfócitos T CD8-Positivos/imunologia , Toxoplasma/imunologia , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Ácido N-Acetilneuramínico/metabolismo , FemininoRESUMO
N-acetylneuraminic acid linked to galactose by α2,6 and α2,3 linkages (Siaα2,6 and Siaα2,3) is expressed on glycoconjugates of animal tissues, where it performs multiple biological functions. In addition, these types of sialic acid residues are the main targets for the binding and entry of influenza viruses. Here we used fluorochrome-conjugated Sambuccus nigra, Maackia amurensis, and peanut lectins for the simultaneous detection of Siaα2,3 and Siaα2,6 and galactosyl residues by two-color flow cytometry on A549 cells, a human pneumocyte cell line used for in vitro studies of the infection by influenza viruses, as well as on Vero and MDCK cell lines. The dexamethasone (DEX) glucocorticoid (GC), a widely used anti-inflammatory compound, completely abrogated the expression of Siaα2,3 in A549 cells and decreased its expression in Vero and MDCK cells; in contrast, the expression of Siaα2,6 was increased in the three cell lines. These observations indicate that DEX can be used for the study of the mechanism of sialylation of cell membrane molecules. Importantly, DEX may change the tropism of avian and human/pig influenza viruses and other infectious agents to animal and human epithelial cells.
RESUMO
Galectin-8 (Gal-8) is a tandem-repeat type galectin with affinity for ß-galactosides, bearing two carbohydrate recognition domains (CRD) connected by a linker peptide. The N- and C-terminal domains (Gal-8N and Gal-8C) share 35% homology, and their glycan ligand specificity is notably dissimilar: while Gal-8N shows strong affinity for α(2-3)-sialylated oligosaccharides, Gal-8C has higher affinity for non-sialylated oligosaccharides, including poly-N-acetyllactosamine and/ or A and B blood group structures. Particularly relevant for understanding the biological role of this lectin, full-length Gal-8 can bind cell surface glycoconjugates with broader affinity than the isolated Gal-8N and Gal-8C domains, a trait also described for other tandem-repeat galectins. Herein, we aim to discuss the potential use of separate CRDs in modelling tandem-repeat galectin-8 and its biological functions. For this purpose, we will cover several aspects of the structure-function relationship of this protein including crystallographic structures, glycan specificity, cell function and biological roles, with the ultimate goal of understanding the potential role of each CRD in predicting full-length Gal-8 involvement in relevant biological processes.
Assuntos
Metabolismo dos Carboidratos , Galectinas/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Galectinas/química , Humanos , Ligantes , Conformação Proteica , Homologia de Sequência de AminoácidosRESUMO
Galectin-8 (Gal-8), a 'tandem-repeat'-type galectin, has been described as a modulator of cellular functions including adhesion, spreading, growth arrest, apoptosis, pathogen recognition, autophagy, and immunomodulation. We have previously shown that activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, serves as a receptor for endogenous Gal-8. ALCAM is a member of the immunoglobulin superfamily involved in cell-cell adhesion through homophilic (ALCAM-ALCAM) and heterophilic (i.e. ALCAM-CD6) interactions in different tissues. Here we investigated the physiologic relevance of ALCAM-Gal-8 association and glycosylation-dependent mechanisms governing these interactions. We found that silencing of ALCAM in MDA-MB-231 triple negative breast cancer cells decreases cell adhesion and migration onto Gal-8-coated surfaces in a glycan-dependent fashion. Remarkably, either Gal-8 or ALCAM silencing also disrupted cell-cell adhesion, and led to reduced tumor growth in a murine model of triple negative breast cancer. Moreover, structural characterization of endogenous ALCAM N-glycosylation showed abundant permissive structures for Gal-8 binding. Importantly, we also found that cell sialylation controls Gal-8-mediated cell adhesion. Altogether, these findings demonstrate a central role of either ALCAM or Gal-8 (or both) in controlling triple negative breast cancer.
Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas Fetais/metabolismo , Galectinas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Antígenos CD/genética , Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular Tumoral , Feminino , Proteínas Fetais/genética , Galectinas/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
The synthesis of multivalent sialylated glycoclusters is herein addressed by a chemoenzymatic approach using the trans-sialidase of Trypanosoma cruzi (TcTS). Multivalent ß-thio-galactopyranosides and ß-thio-lactosides were used as acceptor substrates and 3'-sialyllactose as the sialic acid donor. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was shown to be an excellent technique for the analysis of the reaction products. Different eluting conditions were optimized to allow the simultaneous resolution of the sialylated species, as well as their neutral precursors. The TcTS efficiently transferred sialyl residues to di, tri, tetra and octa ß-thiogalactosides. In the case of an octavalent thiolactoside, up to six polysialylated compounds could be resolved. Preparative sialylation reactions were performed using the tetravalent and octavalent acceptor substrates. The main sialylated derivatives could be unequivocally assigned by MALDI mass spectrometry. Inhibition of the transfer to the natural substrate, N-acetyllactosamine, was also studied. The octalactoside caused 82 % inhibition of sialic acid transfer when we used equimolar concentrations of donor, acceptor and inhibitor.