Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 170888, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402968

RESUMO

A novel flume experiment was conducted to compare the sheltering effect of surrogate seagrass meadows of two different lengths against a bare beach (benchmark). The analyses focused on assessing the impact of meadow cross-shore extent on wave height attenuation, behaviour of wave orbital velocity components, sediment transport, and shoreline erosion. Throughout the tests conducted in the large-scale CIEM wave flume at LIM/UPC Barcelona, meadow density and submergence ratio remained constant, while irregular waves were run over an initial 1:15 sand beach profile. In both meadow layouts, a persistent decrease in wave height from the offshore area in front of the meadow to the breaking zone was found. This reduction was directly correlated with the length of the seagrass meadow. As a result of the reduction in wave energy, less erosion occurred at the shoreline in accordance with the decrease in wave height. The mean velocities exhibited changes in the velocity profile from the meadow area to the immediate zone behind the meadow, a phenomenon not observed in more onshoreward positions. Orbital velocities displayed a reduction exclusively for the long meadow case. This decrease was persistent up to the breaking zone. As a consequence of these changes, the long meadow layout led to a decrease in the volume of sediment transport and a breaker bar closer to the shoreline. The short meadow layout resulted in a higher volume of sediment transport compared to the long meadow layout, although still less than the benchmark layout. Furthermore, in the short meadow layout, the final bar was situated in a location similar to that observed in the benchmark layout.

2.
Data Brief ; 44: 108484, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35966949

RESUMO

This article reports on the dataset gathered following the census of 83 present-day Infralittoral Prograding Wedges (IPWs), surveyed on the inner continental shelf of the Central-Eastern Tyrrhenian Sea. The purpose of the census was to explore their bathymetric range and assess the observational laws governing this variability. The ensued dataset (Campania Region IPW Dataset, CRID) includes geographic, topographic and morpho-bathymetric indices, descriptive of each IPW and more, the exposure of each IPW to wave forcing (Geographical fetch, Effective fetch and extreme significant wave height, H S ). In this work, histograms contribute to describe all the variables and highlight the dominant features of each IPW. Location maps univocally links the geographic position of each IPW to the appropriate attribute record in the dataset. Further, thematic maps illustrate eight wave fields obtained by offshore-to-nearshore transformation by as many sea states scenarios with 200-year return period. Such wave fields are used as sources for significant wave height representing wave conditions over each IPW. This dataset could be implemented with new measures at a broader scale, by following analogue procedures for measurements, to enlarge the observational scale on IPWs and improve the numerical models which might eventually derive by the analysis of this dataset.

3.
Rev. biol. trop ; 68mar. 2020.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1507626

RESUMO

Introducción: La Isla del Coco por su ubicación en el océano Pacífico y en aguas profundas, periódicamente arriban olas energéticas que se originan en el Océano del Sur. La isla actúa como un abrigo disipando parte de la energía de las olas que llegan a la costa pacífica de Costa Rica. Objetivo: El objetivo del trabajo es caracterizar las condiciones generales del oleaje a través de la simulación numérica del oleaje en el Pacífico Tropical del Este (PTE), con especial interés en la Isla del Coco. Métodos: Las olas se propagan con el modelo espectral de oleaje WAVEWATCH III. Se usa en el modelo una malla no estructurada. Se utilizan dos años (2007-2008) de datos históricos de oleaje como condiciones de frontera obtenidos de reanálisis con el modelo WAVEWATCH generado por el Instituto Francés para la Investigación del Mar (IFREMER por sus siglas en francés). Se obtienen mapas anuales y estacionales y series temporales de la altura significante de la ola, periodo y dirección asociado al pico del espectro de energía. Resultados: Los resultados mostrados son similares a otros estudios previos de simulación y observación. El campo de oleaje es caracterizado por periodos largos y dirección desde suroeste en promedio. Las condiciones de oleaje sobre la isla obedecen a los sistemas extratropicales de ambos hemisferios y a procesos locales en el PTE. Conclusiones: El modelo de olas WAVEWATCH III mostró que representa las condiciones típicas de oleaje en los alrededores de la Isla del Coco. Es el primer trabajo de simulación de oleaje aplicando una malla no convencional en la zona económica exclusiva de Costa Rica. El estudio sirve como base para extenderse a otras áreas específicas de la costa.


Introduction: Periodically energetic waves, originated in the Southern Ocean, arrive to Cocos Island, because of its location in the Pacific Ocean and in deep waters. The island acts as a shelter dissipating part of the energy of the waves that reach the Pacific coast of Costa Rica. Objetive: The objective of the work is to characterize the general conditions of the swell through the numerical simulation of the swell in the Eastern Tropical Pacific (ETP), with special interest in Cocos Island. Methods: The waves are propagated with the WAVEWATCH III wave spectral model. An unstructured mesh is used in the model. Two years (2007-2008) of hindcast data are used as boundary conditions obtained from reanalysis with the WAVEWATCH model, generated by the French Institute for Marine Research (IFREMER for its acronym in French). Annual and seasonal maps and time series of significant wave height, peak period and peak wave direction are obtained. Results: The results shown are similar to other previous simulation and observation studies. The mean wave field is characterized by long periods from southwest direction. The wave conditions on the island obey the extratropical systems of both hemispheres and local processes in the PTE. Conclusions: The WAVEWATCH III wave model showed that it represents the typical wave conditions in the surroundings of Cocos Island. It is the first wave simulation work applying an unconventional mesh in the exclusive economic zone of Costa Rica. The study serves as a basis for extending to other specific areas of the coast.

4.
Environmetrics ; 30(6): e2562, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31680764

RESUMO

We describe a model for the conditional dependence of a spatial process measured at one or more remote locations given extreme values of the process at a conditioning location, motivated by the conditional extremes methodology of Heffernan and Tawn. Compared to alternative descriptions in terms of max-stable spatial processes, the model is advantageous because it is conceptually straightforward and admits different forms of extremal dependence (including asymptotic dependence and asymptotic independence). We use the model within a Bayesian framework to estimate the extremal dependence of ocean storm severity (quantified using significant wave height, H S ) for locations on spatial transects with approximate east-west (E-W) and north-south (N-S) orientations in the northern North Sea (NNS) and central North Sea (CNS). For H S on the standard Laplace marginal scale, the conditional extremes "linear slope" parameter α decays approximately exponentially with distance for all transects. Furthermore, the decay of mean dependence with distance is found to be faster in CNS than NNS. The persistence of mean dependence is greatest for the E-W transect in NNS, potentially because this transect is approximately aligned with the direction of propagation of the most severe storms in the region.

5.
Accid Anal Prev ; 133: 105262, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31561116

RESUMO

The paper describes a study aiming to assess the human error contribution in ship accidents in different weather conditions and the contribution that high significant wave heights have in the occurrence of certain accident typologies. To this aim, a Bayesian Belief Network model is developed, which includes variables related to the maritime accident but also to the different wave conditions. For the quantification of the conditional probability tables the maritime accident database of the Portuguese Maritime Authority is used, which includes 857 validated accidents registered in the period 1997-2006. Similarly, several significant wave height databases are used to populate the node correspondent to this variable. The importance of accurate estimation of the significant wave height is also discussed. To substantiate this discussion a comparison between hard evidence (ε) and a soft one (µ,σ) is performed for the significant wave height node of the BBN model. The application of different combinations of evidence in the model allows the identification of patterns of influence of the human error cause in comparison with others, namely with the sea and weather one. The results show one apparent high-risk acceptance within the crews of the fishing vessels and low risk perception in the recreational vessels. Based on the results, are provided recommendations to decrease the risk associated to specific probable causes.


Assuntos
Acidentes/estatística & dados numéricos , Movimentos da Água , Teorema de Bayes , Bases de Dados Factuais , Humanos , Probabilidade , Competência Profissional , Navios , Tempo (Meteorologia)
6.
Sensors (Basel) ; 19(13)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266206

RESUMO

The validation of significant wave height (SWH) data measured by the Sentinel-3A/3B SAR Altimeter (SRAL) is essential for the application of the data in ocean wave monitoring, forecasting and wave climate studies. Sentinel-3A/3B SWH data are validated by comparisons with U. S. National Data Buoy Center (NDBC) buoys, using a spatial scale of 25 km and a temporal scale of 30 min, and with Jason-3 data at their crossovers, using a time difference of less than 30 min. The comparisons with NDBC buoy data show that the root-mean-square error (RMSE) of Sentinel-3A SWH is 0.30 m, and that of Sentinel-3B is no more than 0.31 m. The pseudo-Low-Resolution Mode (PLRM) SWH is slightly better than that of the Synthetic Aperture Radar (SAR) mode. The statistical analysis of Sentinel-3A/3B SWH in the bin of 0.5 m wave height shows that the accuracy of Sentinel-3A/3B SWH data decreases with increasing wave height. The analysis of the monthly biases and RMSEs of Sentinel-3A SWH shows that Sentinel-3A SWH are stable and have a slight upward trend with time. The comparisons with Jason-3 data show that SWH of Sentinel-3A and Jason-3 are consistent in the global ocean. Finally, the piecewise calibration functions are given for the calibration of Sentinel-3A/3B SWH. The results of the study show that Sentinel-3A/3B SWH data have high accuracy and remain stable.

7.
Sensors (Basel) ; 17(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28106763

RESUMO

In this work, a Global Navigation Satellite System (GNSS) buoy that utilizes a Virtual Base Station (VBS) combined with the Real-Time Kinematic (RTK) positioning technology was developed to monitor water surface elevations in estuaries and coastal areas. The GNSS buoy includes a buoy hull, a RTK GNSS receiver, data-transmission devices, a data logger, and General Purpose Radio Service (GPRS) modems for transmitting data to the desired land locations. Laboratory and field tests were conducted to test the capability of the buoy and verify the accuracy of the monitored water surface elevations. For the field tests, the GNSS buoy was deployed in the waters of Suao (northeastern part of Taiwan). Tide data obtained from the GNSS buoy were consistent with those obtained from the neighboring tide station. Significant wave heights, zero-crossing periods, and peak wave directions obtained from the GNSS buoy were generally consistent with those obtained from an accelerometer-tilt-compass (ATC) sensor. The field tests demonstrate that the developed GNSS buoy can be used to obtain accurate real-time tide and wave data in estuaries and coastal areas.

8.
J Coast Res ; 76(sp1): 44-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31708604

RESUMO

The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR 0 , were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100m, even in partly cloudy conditions. The capability to observe subsurface backscatter profiles is achievable but requires much longer transects of several hundreds of meters.

9.
Glob Chang Biol ; 21(1): 195-205, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25088977

RESUMO

Coral reefs and lagoons worldwide are vulnerable environments. However, specific geomorphological reef types (fringing, barrier, atoll, bank for the main ones) can be vulnerable to specific disturbances that will not affect most other reefs. This has implications for local management and science priorities. Several geomorphologically closed atolls of the Pacific Ocean have experienced in recent decades mass benthic and pelagic lagoonal life mortalities, likely triggered by unusually calm weather conditions lasting for several weeks. These events, although poorly known, reported, and characterized, pose a major threat for resource sustainability. Based on a sample of eleven events on eight atolls from the central South Pacific occurring between 1993 and 2012, the conservative environmental thresholds required to trigger such events are identified using sea surface temperature, significant wave height and wind stress satellite data. Using these thresholds, spatial maps of potential risk are produced for the central South Pacific region, with the highest risk zone lying north of Tuamotu Archipelago. A regional climate model, which risk map compares well with observations over the recent period (r=0.97), is then used to downscale the projected future climate. This allows us to estimate the potential change in risk by the end of the 21st century and highlights a relative risk increase of up to 60% for the eastern Tuamotu atolls. However, the small sample size used to train the analysis led to the identification of conservative thresholds that overestimated the observed risk. The results of this study suggest that long-term monitoring of the biophysical conditions of the lagoons at risk would enable more precise identification of the physical thresholds and better understanding of the biological processes involved in these rare, but consequential, mass mortality events.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Animais , Bivalves/fisiologia , Clima , Ecossistema , Peixes/fisiologia , Modelos Teóricos , Mortalidade , Ilhas do Pacífico , Oceano Pacífico , Temperatura , Movimentos da Água , Poluição da Água/estatística & dados numéricos , Tempo (Meteorologia) , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA