Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Wiley Interdiscip Rev RNA ; 15(3): e1852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715192

RESUMO

Small RNAs (sRNAs) with sizes ranging from 15 to 50 nucleotides (nt) are critical regulators of gene expression control. Prior studies have shown that sRNAs are involved in a broad range of biological processes, such as organ development, tumorigenesis, and epigenomic regulation; however, emerging evidence unveils a hidden layer of diversity and complexity of endogenously encoded sRNAs profile in eukaryotic organisms, including novel types of sRNAs and the previously unknown post-transcriptional RNA modifications. This underscores the importance for accurate, unbiased detection of sRNAs in various cellular contexts. A multitude of high-throughput methods based on next-generation sequencing (NGS) are developed to decipher the sRNA expression and their modifications. Nonetheless, distinct from mRNA sequencing, the data from sRNA sequencing suffer frequent inconsistencies and high variations emanating from the adapter contaminations and RNA modifications, which overall skew the sRNA libraries. Here, we summarize the sRNA-sequencing approaches, and discuss the considerations and challenges for the strategies and methods of sRNA library construction. The pros and cons of sRNA sequencing have significant implications for implementing RNA fragment footprinting approaches, including CLIP-seq and Ribo-seq. We envision that this review can inspire novel improvements in small RNA sequencing and RNA fragment footprinting in future. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Assuntos
Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Humanos , Animais
2.
J Appl Genet ; 65(2): 403-413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514586

RESUMO

tsRNAs (tRNA-derived small non-coding RNAs), including tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been implicated in some viral infections, such as respiratory viral infections. However, their involvement in SARS-CoV infection is completely unknown. A comprehensive analysis was performed to determine tsRNA populations in a mouse model of SARS-CoV-infected samples containing the wild-type and attenuated viruses. Data from the Gene Expression Omnibus (GEO) dataset at NCBI (accession ID GSE90624 ) was used for this study. A count matrix was generated for the tRNAs. Differentially expressed tRNAs, followed by tsRNAs derived from each significant tRNAs at different conditions and time points between the two groups WT(SARS-CoV-MA15-WT) vs Mock and ΔE (SARS-CoV-MA15-ΔE) vs Mock were identified. Notably, significantly differentially expressed tRNAs at 2dpi but not at 4dpi. The tsRNAs originating from differentially expressed tRNAs across all the samples belonging to each condition (WT, ΔE, and Mock) were identified. Intriguingly, tRFs (tRNA-derived RNA fragments) exhibited higher levels compared to tiRNAs (tRNA-derived stress-induced RNAs) across all samples associated with WT SARS-CoV strain compared to ΔE and mock-infected samples. This discrepancy suggests a non-random formation of tsRNAs, hinting at a possible involvement of tsRNAs in SARS-CoV viral infection.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Viroses , Camundongos , Animais , RNA de Transferência/genética , RNA de Transferência/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
3.
Front Allergy ; 5: 1307880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384772

RESUMO

Introduction: Anaphylaxis is the most severe manifestation of allergic disorders. Currently, an increasing number of cells, pathways and molecules involved in the etiopathogenesis of anaphylaxis are being discovered. However, there are no conclusive biomarkers to confirm its diagnosis. Small non-coding RNAs (sncRNAs) are 18-200 nucleotide molecules that can be divided into: microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), transference RNA derived fragments (tRFs) and YRNA derived fragments (YRFs). These molecules participate in cell-cell communication modulating various physiological processes and have been postulated as non-invasive biomarkers of several pathologies. Therefore, in this study we characterized the serum circulating profile of other sncRNA beyond miRNAs in two populations of 5 adults and 5 children with drug- and food-mediated anaphylaxis, respectively. Methods: Samples were obtained from each patient under two different conditions: during anaphylaxis and 14 days after the reaction (control). The sncRNA analysis was carried out by Next Generation Sequencing (NGS). Results: A total of 671 sncRNAs (3 piRNAs, 74 snoRNAs, 54 snRNAs, 348 tRFs and 192 YRFs) were identified in adults with drug-induced anaphylaxis, while 612 sncRNAs (2 piRNAs, 73 snoRNAs, 52 snRNAs, 321 tRFs and 164 YRFs) were characterized in children with food-mediated anaphylaxis. However, only 33 (1 piRNA, 4 snoRNAs, 1 snRNAs, 7 tRFs and 20 YRFs) and 80 (4 snoRNAs, 6 snRNAs, 54 tRFs and 16 YRFs) of them were statistically different between both conditions, respectively. Among them, only three (Y_RNA.394, Y_RNA.781 and SCARNA2) were common to both adults and children analysis. Discussion: This study provides a differential profile of circulating serum sncRNAs beyond miRNAs in patients with anaphylaxis, postulating them as candidate biomarkers for this pathological event and as novel mediators of the reaction.

4.
Diabet Med ; 41(2): e15258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935454

RESUMO

AIMS: Maternally inherited diabetes and deafness (MIDD) is a rare form of adult-onset diabetes that can be difficult to diagnose due to its variable clinical phenotype. Transfer RNA-derived small fragments are a novel, emerging class of small non-coding RNAs (sncRNAs) that have significant potential as serum biomarkers due to their stress-induced generation, abundance, stability and ease of detection. METHODS: We investigated the levels of tiRNA 5'ValCAC (alone and in combination with miR-23b-3p) identified from small RNA sequencing studies in serum samples from healthy controls, type 1 diabetes, type 2 diabetes and MIDD subjects. RESULTS: Serum levels of 5'ValCAC were reduced in MIDD and type 2 diabetes subjects compared to controls. Type 2 diabetes subjects had higher serum levels of miR-23b-3p compared to all other subjects. Receiver Operating Characteristic analysis showed the potential of 5'ValCAC and miR-23b-3p as MIDD biomarkers, with the combination showing excellent separation from type 2 diabetes subjects. CONCLUSIONS: This is the first report showing altered serum levels of tiRNAs in diabetes subjects. The combined use of 5'ValCAC and miR-23b-3p as serum biomarkers could potentially differentiate between MIDD subjects and type 2 diabetes subjects.


Assuntos
Surdez , Diabetes Mellitus Tipo 2 , MicroRNAs , Doenças Mitocondriais , Adulto , Humanos , Diabetes Mellitus Tipo 2/genética , Biomarcadores , RNA de Transferência , MicroRNAs/genética
5.
Appl Microbiol Biotechnol ; 108(1): 29, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159117

RESUMO

Small noncoding RNAs (sncRNAs) play important regulatory roles in bacterial physiological processes and host-pathogen interactions. Meanwhile, bacterial outer membrane vesicles (OMVs), as naturally secreted outer membrane structures, play a vital role in the interaction between bacteria and their living environment, including the host environment. However, most current studies focus on the biological functions of sncRNAs in bacteria or hosts, while neglecting the roles and regulatory mechanisms of the OMVs that encapsulate these sncRNAs. Therefore, this review aims to summarize the intracellular regulatory roles of bacterial sncRNAs in promoting pathogen survival by regulating virulence, modulating bacterial drug resistance, and regulating iron metabolism, and their extracellular regulatory function for influencing host immunity through host-pathogen interactions. Additionally, we introduce the key role played by OMVs, which serve as important cargoes in bacterial sncRNA-host interactions. We propose emerging pathways of sncRNA action to further discuss the mode of host-pathogen interactions, highlighting that the inhibition of sncRNA delivery by OMVs may prevent the occurrence of infection to some extent. Hence, this review lays the foundation for future prophylactic treatments against bacterial infections and strategies for addressing bacterial drug resistance. KEY POINTS: •sncRNAs have intracellular and extracellular regulatory functions in bacterial physiological processes and host-pathogen interactions. •OMVs are potential mediators between bacterial sncRNAs and host cells. •OMVs encapsulating sncRNAs have more potential biological functions.


Assuntos
Vesículas Extracelulares , Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Proteínas da Membrana Bacteriana Externa/genética , Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Interações entre Hospedeiro e Microrganismos , Vesículas Extracelulares/metabolismo
6.
Biol Chem ; 404(11-12): 1123-1136, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632732

RESUMO

Small non-coding RNAs (sncRNA) are involved in many steps of the gene expression cascade and regulate processing and expression of mRNAs by the formation of ribonucleoprotein complexes (RNP) such as the RNA-induced silencing complex (RISC). By analyzing small RNA Seq data sets, we identified a sncRNA annotated as piR-hsa-1254, which is likely derived from the 3'-end of 7SL RNA2 (RN7SL2), herein referred to as snc7SL RNA. The 7SL RNA is an abundant long non-coding RNA polymerase III transcript and serves as structural component of the cytoplasmic signal recognition particle (SRP). To evaluate a potential functional role of snc7SL RNA, we aimed to define its cellular localization by live cell imaging. Therefore, a Molecular Beacon (MB)-based method was established to compare the subcellular localization of snc7SL RNA with its precursor 7SL RNA. We designed and characterized several MBs in vitro and tested those by live cell fluorescence microscopy. Using a multiplex approach, we show that 7SL RNA localizes mainly to the endoplasmic reticulum (ER), as expected for the SRP, whereas snc7SL RNA predominately localizes to the nucleus. This finding suggests a fundamentally different function of 7SL RNA and its derivate snc7SL RNA.


Assuntos
RNA Citoplasmático Pequeno , Partícula de Reconhecimento de Sinal , Partícula de Reconhecimento de Sinal/genética , RNA , RNA Citoplasmático Pequeno/genética , RNA Citoplasmático Pequeno/metabolismo , RNA Mensageiro
7.
Diagnostics (Basel) ; 13(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296747

RESUMO

In recent years PIWI-interacting RNAs (piRNAs) have gained the interest of scientists, mainly because of their possible implications in cancer. Many kinds of research showed how their expression can be linked to malignant diseases. However, most of them evaluated the expression of piRNAs in tumor tissues. It was shown how these non-coding RNAs can interfere with many signaling pathways involved in the regulation of proliferation or apoptosis. A comparison of piRNA expression in tumor tissue and adjacent healthy tissues has demonstrated they can be used as biomarkers. However, this way of obtaining samples has a significant drawback, which is the invasiveness of such a procedure. Liquid biopsy is an alternative for acquiring biological material with little to no harm to a patient. Several different piRNAs in various types of cancer were shown to be expressed in bodily fluids such as blood or urine. Furthermore, their expression significantly differed between cancer patients and healthy individuals. Hence, this review aimed to assess the possible use of liquid biopsy for cancer diagnosis with piRNAs as biomarkers.

8.
Front Biosci (Landmark Ed) ; 28(5): 102, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37258478

RESUMO

BACKGROUND: rRNA-derived small RNAs (rsRNAs) represent a novel class of small non-coding RNAs (sncRNAs), produced by the specific cleavage of rRNAs; however, their roles in tumor development are unclear. In the present study, we explored the effect of a kind of rsRNA-28S, which originates from 28S rRNA, on the chemoresistance of prostate cancer cells and the mechanisms underlying its effect. METHODS: Quantitative reverse transcription PCR (RT-PCR) was performed to quantify rsRNA-28S levels in serum samples taken from prostate cancer patients. DU-145R cells, which are resistant to both paclitaxel and docetaxel, were generated from parental DU-145 cells. Northern blot was conducted to detect cellular rsRNA-28S levels following drug treatments. To verify the effect of rsRNAs-28S on chemoresistance, antisense oligonucleotides were utilized to block rsRNA-28S functions, and a series of assays were further performed, such as cell viability, cell proliferation, colony formation and tumor sphere formation. The target gene of rsRNA-28S was explored using dual-luciferase reporter gene assay. RESULTS: The rsRNA-28S level was reduced in the serum samples of patients who received chemotherapy compared to that of patients who did not. Furthermore, the rsRNA-28S level was remarkably declined in DU-145R cells, and drug treatments decreased the levels of rsRNA-28S in DU-145 and DU-145R cells. Moreover, rsRNA-28S inhibition enhanced the chemoresistance of prostate cancer cells as well as their cancer stem cell characteristics. Mechanistically, the prostaglandin I2 synthase (PTGIS) gene transcript was verified as a target of rsRNA-28S, as rsRNA-28S inhibited the translation of PTGIS mRNA by directly binding the 3' untranslated region of PTGIS mRNA. rsRNA-28S inhibition was also found to increase PTGIS abundance, and PTGIS overexpression significantly enhanced prostate cancer cell chemoresistance. CONCLUSIONS: Our findings indicate that rsRNA-28S attenuates prostate cancer cell chemoresistance by downregulating its target gene PTGIS. This study not only greatly contributes to systematic identification and functional elucidation of chemoresistance relevant rsRNAs, but also promotes rsRNA-included combinatorial therapeutic regimens for cancer.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Proliferação de Células/genética , RNA Mensageiro , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia
9.
Microbiol Spectr ; 11(3): e0356422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036375

RESUMO

Many RNA modifications have been detected in rRNA, tRNA and small noncoding RNA (sncRNA) as well as in low-abundance RNA species such mRNA. Although RNA modifications play roles in many cellular and biological processes in various domains of life, knowledge about the diversity and role of RNA modifications in Toxoplasma gondii is limited. In this study, RNA modifications in three T. gondii strains (RH type I, PRU type II, and VEG type III) with distinct virulence abilities were determined by liquid chromatography-tandem mass spectrometry. We compared the levels of modifications of four nucleotides in tRNA and sncRNA, characterized RNA modification patterns of different T. gondii strains, and determined the diversity of RNA modifications. We detected and quantified 22 modified nucleosides in both tRNA and sncRNA. Significant differences in the diversity of the modified nucleosides were found between the three T. gondii strains. RNA modifications were correlated with the expression of many T. gondii virulence proteins. Some of the identified modifications (e.g., 2'-O-methylinosine, pseudouridine) play a role in mediating the host-parasite interaction. These results provide novel insight into the global modifications in tRNA and sncRNA, and the diversity of RNA modifications between T. gondii strains with different virulence backgrounds. IMPORTANCE Although RNA modifications play roles in many cellular and developmental processes in various domains of life, knowledge about the patterns and functions of RNA modifications in T. gondii is limited. Here, a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was used to study global RNA modifications in T. gondii strains of distinct virulence backgrounds. We quantified 22 modified nucleosides in both tRNA and sncRNA. Significant T. gondii strain-specific differences in RNA modifications were detected. More tRNA modifications correlated with T. gondii virulence proteins than sncRNA modifications. RNA modifications were significantly correlated with virulence proteins. Our data provide the first comprehensive profiling of the modifications tRNA and sncRNA in T. gondii, expanding the diversity of RNA modifications in this parasite and suggesting new regulators for modulating its virulence.


Assuntos
Pequeno RNA não Traduzido , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Espectrometria de Massas em Tandem , Cromatografia Líquida , Pequeno RNA não Traduzido/metabolismo , Nucleosídeos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Protozoários/genética
10.
Theranostics ; 13(4): 1289-1301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923527

RESUMO

Background: Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; AML is highly heterogeneous and involves abnormalities at multiple omics levels. Small non-coding RNAs (sncRNAs) present in body fluids are important regulatory molecules and considered promising non-invasive clinical diagnostic biomarkers for disease. However, the signature of sncRNA profile alteration in AML patient serum and bone marrow supernatant is still under exploration. Methods: We examined data for blood and bone marrow samples from 80 consecutive, newly-diagnosed patients with AML and 12 healthy controls for high throughput small RNA-sequencing. Differentially expressed sncRNAs were analysed to reveal distinct patterns between AML patients and controls. Machine learning methods were used to evaluate the efficiency of specific sncRNAs in discriminating individuals with AML from controls. The altered expression level of individual sncRNAs was evaluated by RT-PCR, Q-PCR, and northern blot. Correlation analysis was employed to assess sncRNA patterns between serum and bone marrow supernatant. Results: We identified over 20 types of sncRNA categories beyond miRNAs in both serum and bone marrow supernatant, with highly coordinated expression patterns between them. Non-classical sncRNAs, including rsRNA (62.86%), ysRNA (14.97%), and tsRNA (4.22%), dominated among serum sncRNAs and showed sensitive alteration patterns in AML patients. According to machine learning-based algorithms, the tsRNA-based signature robustly discriminated subjects with AML from controls and was more reliable than that comprising miRNAs. Our data also showed that serum tsRNAs to be closely associated with AML prognosis, suggesting the potential application of serum tsRNAs as biomarkers to assist in AML diagnosis. Conclusions: We comprehensively characterized the expression pattern of circulating sncRNAs in blood and bone marrow and their alteration signature between healthy controls and AML patients. This study enriches research of sncRNAs in the regulation of AML, and provides insights into the role of sncRNAs in AML.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Pequeno RNA não Traduzido , Adulto , Humanos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , MicroRNAs/genética , Biomarcadores , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Medula Óssea/metabolismo
11.
Toxicol Mech Methods ; 33(7): 541-551, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36992569

RESUMO

The repertoire of regulatory noncoding RNAs (ncRNAs) has been enriched by the inclusion of long noncoding RNA (lncRNA) that are longer than 200 nt. Some of the currently known lncRNAs, were reported in the 1990s before the term lncRNA was introduced. These lncRNAs have diverse regulatory functions including regulation of transcription via interactions with proteins and RNAs, chromatin remodeling, translation, posttranslational protein modification, protein trafficking and cell signaling. Predictably, the dysregulation of lncRNA expression due to exposure to toxicants may precipitate adverse health consequences. Dysregulation of lncRNAs has also been implicated in various adverse human health outcomes. There is an increasing agreement that lncRNA expression profiling data needs to be closely examined to determine whether their altered expression can be used as biomarkers of toxicity as well as adverse human health outcomes. This review summarizes the biogenesis, regulation, function of lncRNA and their emerging significance in toxicology and disease conditions. Because our understanding of the lncRNA-toxicity relationship is still evolving, this review discusses this developing field using some examples.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Montagem e Desmontagem da Cromatina
12.
J Surg Res ; 284: 237-244, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599285

RESUMO

Small non-coding RNAs (sncRNAs) are defined by being less than 200 nucleotides (nt) in length, and consequently, have been divided into many different subclasses including mature microRNA (miRNA), small interfering RNA (siRNA), piwi-interacting RNA (piRNA), protein functional effector sncRNA (pfeRNA), precursor miRNA (pre-miRNA), small nucleolar RNA (snoRNA), 5S ribosome RNA (5SrRNA), 5.8SrRNA, and small nuclear RNA (snRNA). Except for the class of pfeRNAs, the discovery, identification, biogenesis, characterization, and function of other sncRNAs have been well documented. Herein, we provide a review, written especially for clinicians, of the least understood class of functional sncRNAs, the pfeRNAs, focusing on their initial discovery, identification, unique features, function, as well as their exciting clinical translational potential.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , MicroRNAs/genética , RNA Interferente Pequeno/genética , RNA de Interação com Piwi
13.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203541

RESUMO

The study of liquid biopsy with plasma samples is being conducted to identify biomarkers for clinical use. Exosomes, containing nucleic acids and metabolites, have emerged as possible sources for biomarkers. To evaluate the effectiveness of exosomes over plasma, we analyzed the small non-coding RNAs (sncRNAs) and metabolites extracted from exosomes in comparison to those directly extracted from whole plasma under both fasting and non-fasting conditions. We found that sncRNA profiles were not affected by fasting in either exosome or plasma samples. Our results showed that exosomal sncRNAs were found to have more consistent profiles. The plasma miRNA profiles contained high concentrations of cell-derived miRNAs that were likely due to hemolysis. We determined that certain metabolites in whole plasma exhibited noteworthy concentration shifts in relation to fasting status, while others did not. Here, we propose that (1) fasting is not required for a liquid biopsy study that involves both sncRNA and metabolomic profiling, as long as metabolites that are not influenced by fasting status are selected, and (2) the utilization of exosomal RNAs promotes robust and consistent findings in plasma samples, mitigating the impact of batch effects derived from hemolysis. These findings advance the optimization of liquid biopsy methodologies for clinical applications.


Assuntos
Exossomos , MicroRNAs , Pequeno RNA não Traduzido , Humanos , Hemólise , Jejum , Biomarcadores , Biópsia Líquida , MicroRNAs/genética
14.
Front Endocrinol (Lausanne) ; 13: 1038449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531465

RESUMO

Purpose: To study whether physical exercise can effectively ameliorate obesity-induced abnormalities in male fertility and provide a new perspective on the role of small noncoding RNAs in spermatogenesis in obese male mice. Methods: In this study, four-week-old C57/Bl6 male mice were randomly allocated to receive a control diet, a high-fat diet or physical exercise intervention for 40 weeks. Purified round spermatids and spermatozoa were obtained after intervention. Sperm motility, concentration, the ability of the sperm to undergo capacitation and acrosome reaction were assessed. Small RNA sequencing was conducted on round spermatids and spermatozoa. The small noncoding RNAs expression pattern was systematically analyzed. Results: The spermatozoa concentration and percentage of motile spermatozoa, the capacitation and acrosome reaction, and the reproductive success rate, including mating success and pregnancy success, were decreased or delayed in the obesity group compared with controls. Physical exercise was able to restore the parameters to normal levels. Three microRNAs were consistently upregulated and 5 were downregulated in round spermatids and epididymal spermatozoa between the obesity and control groups. Conclusions: This report provides evidence that the adverse effects of obesity could be offset after physical exercise. small noncoding RNAs, especially microRNAs in germ cells, may play an important role in the effects of obesity and physical exercise on spermatozoa.


Assuntos
MicroRNAs , Motilidade dos Espermatozoides , Gravidez , Feminino , Masculino , Camundongos , Animais , Capacitação Espermática , Sêmen , Obesidade/genética , Obesidade/terapia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , MicroRNAs/genética
15.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498932

RESUMO

Here, we link approved and emerging nucleic acid-based therapies with the expanding universe of small non-coding RNAs (sncRNAs) and the innate immune responses that sense oligonucleotides taken up into endosomes. The Toll-like receptors (TLRs) 3, 7, 8, and 9 are located in endosomes and can detect nucleic acids taken up through endocytic routes. These receptors are key triggers in the defense against viruses and/or bacterial infections, yet they also constitute an Achilles heel towards the discrimination between self- and pathogenic nucleic acids. The compartmentalization of nucleic acids and the activity of nucleases are key components in avoiding autoimmune reactions against nucleic acids, but we still lack knowledge on the plethora of nucleic acids that might be released into the extracellular space upon infections, inflammation, and other stress responses involving increased cell death. We review recent findings that a set of single-stranded oligonucleotides (length of 25-40 nucleotides (nt)) can temporarily block ligands destined for endosomes expressing TLRs in human monocyte-derived dendritic cells. We discuss knowledge gaps and highlight the existence of a pool of RNA with an approximate length of 30-40 nt that may still have unappreciated regulatory functions in physiology and in the defense against viruses as gatekeepers of endosomal uptake through certain routes.


Assuntos
Ácidos Nucleicos , Vírus , Humanos , Antivirais , Oligonucleotídeos , Espaço Extracelular/metabolismo , Receptores Toll-Like/metabolismo , Imunidade Inata , Ácidos Nucleicos/metabolismo
16.
Oncotarget ; 13: 1246-1257, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36395362

RESUMO

INTRODUCTION: Cancer research has significantly improved in recent years, primarily due to next-generation sequencing (NGS) technology. Consequently, an enormous amount of genomic and transcriptomic data has been generated. In most cases, the data needed for research goals are used, and unwanted reads are discarded. However, these eliminated data contain relevant information. Aiming to test this hypothesis, genomic and transcriptomic data were acquired from public datasets. MATERIALS AND METHODS: Metagenomic tools were used to explore genomic cancer data; additional annotations were used to explore differentially expressed ncRNAs from miRNA experiments, and variants in adjacent to tumor samples from RNA-seq experiments were also investigated. RESULTS: In all analyses, new data were obtained: from DNA-seq data, microbiome taxonomies were characterized with a similar performance of dedicated metagenomic research; from miRNA-seq data, additional differentially expressed sncRNAs were found; and in tumor and adjacent to tumor tissue data, somatic variants were found. CONCLUSIONS: These findings indicate that unexplored data from NGS experiments could help elucidate carcinogenesis and discover putative biomarkers with clinical applications. Further investigations should be considered for experimental design, providing opportunities to optimize data, saving time and resources while granting access to multiple genomic perspectives from the same sample and experimental run.


Assuntos
MicroRNAs , Neoplasias , Pequeno RNA não Traduzido , Humanos , Software , Sequenciamento de Nucleotídeos em Larga Escala , Genômica , MicroRNAs/genética , Neoplasias/genética
17.
Life (Basel) ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36362875

RESUMO

Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is still better. Astrocyte dysfunction promotes neurodegeneration and thus derived scnRNA signatures could provide a more precise way to identify of changes related to NDD course and pathogenesis, and it could be useful for the dissection of mechanistic insights operating in NDD. Often sncRNA are transported outside the cell by the action of secreted particles such as extracellular vesicles (EV), which protect sncRNA from degradation. Furthermore, EV associated sncRNA can cross the BBB to be found in easier to obtain peripheral samples, EVs also inherit cell-specific surface markers that can be used for the identification of Astrocyte Derived Extracellular Vesicles (ADEVs) in a peripheral sample. By the study of the sncRNA transported in ADEVs it is possible to identify astrocyte specific sncRNA signatures that could show astrocyte dysfunction in a more simpler manner than previous methods. However, sncRNA signatures in ADEV are not a copy of intracellular transcriptome and methodological aspects such as the yield of sncRNA produced in ADEV or the variable amount of ADEV captured after separation protocols must be considered. Here we review the role as signaling molecules of ADEV derived sncRNA dysregulated in conditions associated with risk of neurodegeneration, providing an explanation of why to choose ADEV for the identification of astrocyte-specific transcriptome. Finally, we discuss possible limitations of this approach and the need to improve the detection limits of sncRNA for the use of ADEV derived sncRNA signatures.

18.
Cancer Lett ; 546: 215842, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35964819

RESUMO

tRNA-derived small RNAs (tsRNAs) represent a novel class of regulatory small non-coding RNAs (sncRNAs), produced by the specific cleavage of transfer RNAs (tRNAs). In recent years, pilot studies one after the other have uncovered the critical roles of tsRNAs in various fundamental biological processes as well as in the development of human diseases including cancer. Based on the newly updated hallmarks of cancer, we provide a comprehensive review regarding the dysregulation, functional implications and complicated molecular mechanisms of tsRNAs in cancer. In addition, the potential technical challenges and future prospects in the fields of tsRNA research are discussed in this review.


Assuntos
Neoplasias , Pequeno RNA não Traduzido , Humanos , RNA de Transferência
19.
Front Cell Infect Microbiol ; 12: 923300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873157

RESUMO

Objectives: The small noncoding RNAs (sncRNAs) including microRNAs and the noncanonical sncRNAs [i.e., tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs)] are a vital class of gene regulators in response to a variety of diseases. We focus on an sncRNA signature enriched in hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF) to develop a plasma exosome-based noninvasive biomarker for human ACLF. Methods: In this work, sncRNAs related to HBV-ACLF were identified by small RNA sequencing (RNA-seq) in plasma exosomes collected from 3 normal subjects, 4 chronic hepatitis B (CHB) patients with flare, and 6 HBV-ACLF patients in the discovery cohort. Thereafter, the differentially expressed sncRNAs were further verified in a validation cohort (n = 313) using the newly developed molecular signature incorporating different mi/ts/rsRNAs (named as MTR-RNAs) through qRT-PCR assays. Subsequently, using the least absolute shrinkage and selection operator (LASSO) logistic regression (LR) model analysis, we developed an MTR-RNA classifier for early detection of ACLF. Results: The identified sncRNAs (hsa-miR-23b-3p, hsa-miR-223-3p, hsa-miR-339-5p, tsRNA-20, tsRNA-46, and rsRNA-249) were specifically differentially expressed in plasma exosomes of HBV-ACLF. The MTR-RNA signature (AUC = 0.787) containing the above sncRNAs distinguished HBV-ACLF cases among normal subjects with 71.67% specificity and 74.29% sensitivity, CHB patients with flare (AUC = 0.694, 85.71% sensitivity/59.5% specificity), and patients with CHB/cirrhosis (AUC = 0.785, 57.14% sensitivity/94.59% specificity). Notably, it revealed 100% specificity/94.80% sensitivity in detecting patients or normal people. Conclusions: Our as-constructed plasma-derived exosomal sncRNA signature can serve as a reliable biomarker for ACLF detection and also be adopted to be the pre-triage biomarker for selecting cases that can gain benefits from adjuvant treatment.


Assuntos
Insuficiência Hepática Crônica Agudizada , MicroRNAs , Pequeno RNA não Traduzido , Insuficiência Hepática Crônica Agudizada/diagnóstico , Insuficiência Hepática Crônica Agudizada/terapia , Biomarcadores , Vírus da Hepatite B/genética , Humanos
20.
Infect Immun ; 90(8): e0026722, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35861532

RESUMO

The outer membrane vesicles (OMVs) secreted by Helicobacter pylori contain various bacterial components, such as proteins, phospholipids, toxins, and nucleic acids, including small noncoding RNA (sncRNA), which have regulatory functions in cell envelope structure, metabolism, bacterial communication, biofilm formation, and virulence. We previously showed that knocking out sncRNAs sR-989262 and sR-2509025 at the cellular level increased interleukin 8 (IL-8) levels in mice exposed to OMVs. In this study, we show that immunization with ΔsR-989262 and ΔsR-2509025 OMVs intragastrically significantly increased immunoglobulin G (IgG) and secreted IgA levels in mice compared to wild-type OMVs and without weight changes, which indicated that sncRNA-deficient OMVs are relatively safe to immunize mice. The detection of IgG subtypes IgG1 and IgG2c showed that the sncRNA-deficient OMVs primarily stimulate the T helper 2 (Th2)-mediated immune response. Moreover, levels of the cytokines IL-4, IL-13, gamma interferon (IFN-γ), IL-12 (p40), IL-8, and IL-17 indicate that ΔsR-989262 and ΔsR-2509025 OMVs trigger the Th2-type immune response but primarily trigger a Th1-mediated and Th17-mediated immune response. These findings show that OMV-encapsulated sncRNA plays an important role in regulating the immune response in hosts infected by H. pylori at the animal level. Moreover, they show that knocking out of sR-989262 and sR-2509025 improves the immunogenicity and protective efficacy of OMVs, and this may be beneficial to the design of OMV-based H. pylori vaccines.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Pequeno RNA não Traduzido , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Modelos Animais de Doenças , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/genética , Imunoglobulina G/metabolismo , Interleucina-8/metabolismo , Camundongos , Pequeno RNA não Traduzido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...