RESUMO
Cadmium (Cd) is one of the most toxic heavy metals for human health. It can be present in multiple food products, including cocoa cultivated in regions with high soil Cd concentrations. A strategy to minimize Cd uptake by cacao trees is using cadmium-tolerant bacteria (CdtB) and filamentous fungi (CdtF) to reduce Cd availability in soils. We isolated culturable CdtB and CdtF from different locations in a cocoa-producing region in central Colombia. A total of 42 CdtB and 30 CdtF morphotypes were isolated from locations with varying natural Cd concentrations. In vitro characterizations showed that in addition to their resistance to Cd, bacteria and fungi are involved in the nutrient cycling of N, P, and C in the soil. Bacterial morphotypes from genera Pseudomonas and Burkholderia grew in concentrations up to 140 mg kg-1 Cd. Among the isolated fungi, P. igniaria, Metarhizium sp., and Annulohypoxylon sp. were the most resistant, with the highest average Cd bioaccumulation, Cd remotion, and tolerance. We present new information about the native culturable bacterial morphotypes associated with cacao plants and, to the best of our knowledge, this is the first report of Cd-TF associated with cacao crops. Our results expand the knowledge about culturable CdtB and CdtF in cacao-cultivated soils and their interaction with key soil elements, with the potential to develop integrated soil management strategies.
RESUMO
Sulfentrazone (STZ) is an efficient tool for the pre- and post-emergence control of monocotyledonous and dicotyledonous weeds in fields of crops such as pineapple, coffee, sugarcane, citrus, eucalyptus, tobacco, and soybean. However, this herbicide persists in the soil, causing phytotoxicity in the subsequent crop. Therefore, it is important to use efficient strategies for the remediation of STZ-contaminated areas. The aim of this study was to evaluate the effects of Crotalaria juncea L. on the remediation of STZ-contaminated soil and on the microbial activity and bacterial community structure therein. The study was conducted in three stages: (i) cultivation of C. juncea in soil contaminated with 200, 400, and 800 g ha-1 STZ; (ii) determination of the soil microbial activity (basal respiration, microbial biomass carbon, and bacterial community structure); and (iii) cultivation of a bioindicator species and determination of the residual fraction of STZ. The soil microbial activity was impacted by the soil type and STZ dose. Soil previously cultivated with C. juncea (rhizospheric soil) displayed higher CO2 and lower qCO2 values than non-rhizospheric soil (no previous C. juncea cultivation). Increasing doses of STZ reduced the activity and lowered the diversity indices of the soil microorganisms. The bacterial community structure was segregated between the rhizospheric and non-rhizospheric soils. Regardless of soil type, the bioindicator of remediation (Pennisetum glaucum R.Br.) grew only at the STZ dose of 200 g ha-1, and the plant intoxication level was also lower in rhizospheric soil treated with this herbicide dose. All P. glaucum plants died in the soils treated with 400 and 800 g ha-1 STZ. Previous cultivation of C. juncea in soils contaminated with 200, 400, and 800 g ha-1 STZ reduced the residual fraction of the herbicide by 4.8%, 12.5%, and 17.4%, respectively, compared with that in the non-rhizospheric soils. In conclusion, previous cultivation with C. juncea promoted increases in the soil bacterial activity and diversity indices, mitigated the deleterious effects of STZ on the bioindicator crop, and reduced the residual fraction of the herbicide in the soil.
Assuntos
Crotalaria , Microbiologia do Solo , Sulfonamidas , Triazóis , Crotalaria/metabolismo , Biodegradação Ambiental , Sulfonamidas/metabolismo , Triazóis/metabolismoRESUMO
Soil acidification and increased bioavailability of Ni are problems that affect agricultural soils. This study aims to compare the effects of both lime and biochar from corn stover in soil acidity correction, improving soil physicochemical properties and soil re-acidification resistance. As well as assesseing the impacts on human health risk caused by bioavailability of nickel. A greenhouse pot experiment was conducted for 30 days to determine the effect of biochar and lime on soil physicochemical properties and nickel bioavailability. Afterwards, a laboratory test was carried out to determine the repercussions of both amendments on soil resistance to re-acidification and re-mobilization of nickel. Human health risk was determined using nickle bioavailable concentration. Overall, the results of this study showed that biochar application significantly reduced soil acidity from 8.2 ± 0.8 meq 100 g-1 to 1.9 ± 0.3 meq 100 g-1, this reduction markedly influenced the bioavailability of nickel, which decreased significantly. Moreover, soil physicochemical properties and soil resistance to acidification were improved. Furthermore, biochar significantly reduced human health risk compared to lime application, even under a re-acidification scenario. It was possible to verify that Ni immobilization in the soil was increased when biochar was used. Soil Ni immobilization is associated with co-precipitation and chemisorption. Hence, it was demonstrated that biochar is more effective than lime in reducing soil acidity and remedying nickel-contaminated agricultural soils.
RESUMO
The intake of Cd-enriched food is the main Cd pathway for the nonsmoking population. In some cases, Cd bioaccumulates in edible plant parts which comprise risk to consumers, because of Cd is a harmful heavy metal that can cause potent environmental and health hazards. For instance, Cd enrichment of cacao seeds have led to Cd enrichment of cacao-based products. In Latin America and the Caribbean, Cd bioaccumulation in cacao seeds occurs in different regions with diverse edaphoclimatic conditions, which makes it difficult to select soil remediation alternatives. Limited resources require that potential amendments must be carefully investigated through laboratory and/or greenhouse conditions before scaling up to field experiments. In this study, we evaluated the effectiveness of four biochars: coffee-, quinoa-, and inoculated- and palm-biochar, derived from three feedstocks: coffee husk, quinoa straw, and oil palm residues, respectively. Biochars were applied in two rates (1 and 2% w/w) in two soils, one moderately acidic and one slightly alkaline (Cd-spiked and non-spiked). CCN-51 cacao plants were used for the greenhouse experiment. After 130 days, biometric parameters, the bioavailability of Cd in the soil, and the concentration of Cd and mineral nutrients in the plants were measured. Quinoa biochar at the 2% significantly decreased (P < 0.01), by â¼71%, bioavailable Cd in moderately acidic and slightly alkaline soils, and leaf-Cd by â¼48%. Soil pH, electrical conductivity, and effective cation exchange capacity were significantly (P < 0.01) correlated with bioavailable soil and leaf-Cd. Biochar characteristics, such as ash contents, basic cations content, and surface functional groups could be used as indicators for the selection of biochars to reduce Cd uptake by cacao. Additionally, application of quinoa derived biochar provided P and K, which could increase productivity to offset mitigation costs. Overall, incorporation of quinoa biochar at 2% rate is effective for lowering bioavailable Cd in different soil types which reduces leaf-Cd in cacao plants.
RESUMO
The green synthesis of metal oxide nanoparticles is presented as an excellent sustainable alternative for achieving nanostructures, with potential applications. This research provides important information regarding the influence of the type of solvent used in extracting organic reducing agents from E. globulus on the FeO NPs green synthesis protocol. A broad approach to characterization is presented, where UV-vis spectrophotometry suggests the presence of this type of nanoparticulate material. Likewise, the reduction mechanism was evaluated by FT-IR and the magnetic properties were evaluated by PPSM. In addition, characterizations were linked via elemental analysis (EDX), crystallographic characterization (XRD), electron microscopy (SEM/STEM), and Z potential to evaluate colloidal stability. The results show the influence of the type of solvent used for the extraction of organic reducing agents from E. globulus, and the effect on the synthesis of FeO NPs. In addition, the nanostructure material obtained showed excellent efficiency in the remediation of agricultural soil, eliminating metals such as Cr-VI, Cd, and, to a lesser extent, Pb.
Assuntos
Eucalyptus/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Metais Pesados/química , Extratos Vegetais/química , Poluentes do Solo/química , Solo/química , Adsorção , Agricultura , Poluição Ambiental , Química Verde , Metais Pesados/análise , Solventes , Análise EspectralRESUMO
Chemical stabilization is an in-situ remediation that uses amendments to reduce contaminant availability in polluted soils. Rates of phosphate, lime, biochar, and biosolids were evaluated as affecting Pb speciation and mobility in soil samples of a mining area located in Vazante, state of Minas Gerais, Brazil. Chemical and mineralogical characterization, desorption kinetics, sequential extraction, leaching evaluation in columns and speciation using X-ray absorption near edge structure were performed. Pb adsorbed on bentonite and on anglesite were the predominant species in the unamended soil. The treatments with phosphate and lime transformed part of the Pb species to pyromorphite. Conversely, part of Pb species was transformed to Pb adsorbed on citrate in the soil amended with biochar, while PbCl2 was formed in soil samples amended with biosolids. Phosphate and lime increased the Pb extracted in the residual fraction, thus showing that more recalcitrant species, such as pyromorphite, were formed. Biosolids and biochar treatments decreased the Pb in the residual fraction, and the fraction associated to organic matter increased after the addition of biosolids. Phosphate and lime were effective to immobilize Pb and to decrease Pb desorption kinetics, but the organic amendments increased the desorption kinetics of Pb in all rates applied. The soil amended with phosphate decreased the Pb leached in the experiment with leaching columns.
Assuntos
Poluentes do Solo , Solo , Cinética , Chumbo , Poluentes do Solo/análise , Espectroscopia por Absorção de Raios XRESUMO
Hormone-like herbicides, used for large crops, can contaminate non-target areas with their waste. The objective of this study was to evaluate the tolerance of Mabea fistulifera and Zeyheria tuberculosa to 2,4-D + picloram herbicides by means of morphological and anatomical evaluations. The experiment was performed in a greenhouse in a 4 × 2 factorial scheme. The first factor was the control (without herbicide) and three doses (0.166; 0.333, and 0.666 L ha-1) of the herbicide Tordon® (402 g L-1 2,4-D + 103.6 g L-1 picloram) and the second factor, the species Mabea fistulifera and Zeyheria tuberculosa. The number of M. fistulifera leaves was lower after treatment with the highest dose of the 2,4-D + picloram mixture. The herbicide rates did not influence the number of Z. tuberculosa leaves. The higher dose of 2,4-D + picloram caused a more than 50% reduction in leaf area. Toxicity increased linearly as a function of the doses of the 2,4-D + picloram mixture. Changes in the leaf anatomy of the two species treated with herbicides were observed; however, the roots did not show any changes. Mabea fistulifera and Zeyheria tuberculosa can be recommended for phytoremediation programs in areas contaminated by the herbicides 2,4-D + picloram.
Phytoremediation of soils contaminated with herbicides is a recent and viable tool for environmental decontamination and for the protection of water resources. Mabea fistulifera and Zeyheria tuberculosa can be used to compose riparian forests and retain the arrival of herbicides in the water. Plant anatomy and morphological characteristics are viable tools to assess the tolerance and phytoremediation potential of plant species. Mabea fistulifera and Zeyheria tuberculosa are tolerant to the presence of hormonal herbicides. In this way, they can be used to recover natural areas close to the cultivation areas where the herbicides 2,4-D and picloram are used.
Assuntos
Herbicidas , Picloram , Ácido 2,4-Diclorofenoxiacético , Biodegradação Ambiental , SoloRESUMO
Novel green technologies for soil remediation have been focusing on altering soil properties and improving soil health. Hydrothermally-altered feldspar (HYP, HydroPotash), recently developed, is being related as both an efficient amendment to immobilize heavy metals in soils and a plant nutrients source, consisting in a promising technology for revegetation of contaminated sites. In order to evaluate the effectiveness of using HYP for phytostabilization programs, two different soils (Technosol and Oxisol) collected from a smelting site were amended with increasing doses of HYPs (HYP-1 and HYP-2): 15, 30, 60, and 120 Mg ha-1. For comparison, a control (soil without amendment) and a soil amended with zeolite (clinoptilolite) were also included as treatments. After 90 days of incubation, HYPs decreased up to 83.8 % of Cd availability and reduced exchangeable Al up to 100 %. HydroPotash increased pH, cation exchange capacity, and contents of potassium, calcium, and phosphorus, as well as microbial biomass carbon, and fluorescein diacetate hydrolysis of soils. Andropogon gayanus, Eucalyptus grandis, and Heterocondylus vitalbae started growing from the dose of 15 Mg ha-1 HYPs in the Oxisol and 60 Mg ha-1 HYPs in the Technosol. Principal component analysis indicates that plant shoot dry weight was negatively correlated with extractable Cd and Zn and positively with pH, CEC, and Ca content. Besides promoting plant growth, HYPs reduced heavy metals (Cd and Zn) absorption by plants, indicating that HYP has potential use as an amendment in phytostabilization programs.
Assuntos
Metais Pesados , Poluentes do Solo , Silicatos de Alumínio , Metais Pesados/análise , Metais Pesados/toxicidade , Compostos de Potássio , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidadeRESUMO
Biochar has attracted interest due to its ability to improve soil fertility, soil carbon, and crop yield. Also, biochar can adsorb metals and render them less bioavailable. We investigated the soil availability, sequential extraction, and maize uptake of Cd, Pb, and Zn in a highly contaminated soil amended with rice straw biochar rates (0.0, 5.0, 10.0, 20.0, and 30.0 Mg ha-1). We hypothesized that biochar application to the soil cultivated with maize attenuates metal toxicity and mobility in slag-polluted soils near an abandoned Pb smelting plant in Brazil. Results showed that applying biochar increased the soil organic carbon, CEC, and P up to 27, 30, and 107, respectively. Plant accumulation of P and N was 104 and 32% higher than control, while aerial and root biomasses were increased by 18 and 23%. The sequential extraction showed that Pb and Zn in the original soil were retained mainly in residual fractions (94 and 87%, respectively), while Cd was mostly allocated in the organic fraction (47%). Biochar rates increased the proportion of Cd in the organic fraction to 85%, while Pb and Zn were redistributed mainly into iron oxides. The Cd, Pb, and Zn bioavailability assessed by DTPA decreased 32% in the biochar-amended soil, reducing plants' metal uptake. The maize biomass increase, metal soil bioavailability decrease, and low metal concentration in shoots driven by biochar indicate that phytoattenuation using rice straw biochar and maize cultivation could reduce risks to humans and the environment in the polluted sites of Santo Amaro.
Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/análise , Carbono , Carvão Vegetal , Humanos , Chumbo , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Zea mays , Zinco/análiseRESUMO
The green synthesis of iron oxide nanoparticles (FeO NP) has been investigated using the extract in absolute ethanolic and alcoholic solvents 96% from the peel of the mango fruit (Mangifera indica), thus evaluating the influence of the type of solvent on the extraction of reducing metabolites. A broad approach to characterization initially controlled by UV-vis spectrophotometry has been directed, the formation mechanism was evaluated by Fourier transform infrared spectroscopy (FTIR), the magnetic properties by characterization by Physical Property Measurement System (PPSM), in addition to a large number of techniques such as X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (DRX), transmission electron microscopy (TEM/STEM), electron energy loss spectroscopy (EELS), and Z potential to confirm the formation of FeO NP. The results suggest better characteristics for FeO NP synthesized using 96% alcoholic solvent extract. The successful synthesis was directly proven in the removal of metals (Cr-VI, Cd, and Pb) as a potential alternative in the remediation of agricultural soils.
Assuntos
Compostos Férricos/química , Química Verde , Mangifera/química , Nanopartículas/química , Extratos Vegetais/química , Solo/química , Produção AgrícolaRESUMO
Hydrothermally-altered feldspar (HydroPotash, HYP) possesses, among other physicochemical properties, high pH buffering and cation exchange capacity. Therefore, it may potentially remove heavy metals from aqueous solutions and immobilize these metals in contaminated soil. This study aimed to evaluate the capabilities of two types of HydroPotash (HYP-1 and HYP-2) and a zeolite sample (a commercial adsorbent) for immobilizing cadmium (Cd), zinc (Zn), and lead (Pb) from both aqueous solution and contaminated soils from a Zn-smelting area (classified as soilhigh, soilintermediate, and soillow based on their level of soluble metal concentration). Sorption studies in natural suspension pH showed that HYPs removed 63.8-99.9% Zn, 20.6-40.7% Cd, and 68.4-99.7% Pb from aqueous solution. In the batch test with controlled pH (at pH 5.5), HYPs sorbed more Cd than zeolite. Analyses of scanning electron microscopy-energy dispersive X-ray spectroscopy after desorption showed the presence of Pb at HYP-2, indicating that this metal was effectively adsorbed. In soilhigh HYPs immobilized 99.9% of Zn, Cd, and Pb after one week of soil incubation with these products. The HYPs immobilization effect persisted up to 84 days of soil incubation with these products. The increased soil pH promoted by HYPs appears to be the main factor controlling metal sorption. In conclusion, HydroPotash can be used as an adsorbent/amendment to effectively immobilize heavy metals in both water and contaminated soils by precipitation and adsorption. Our findings indicate the high potential of this material for Cd, Zn, and Pb stabilization, which is of great relevance when recovering areas affected by mining/smelting activities with multi-element contamination.
Assuntos
Metais Pesados , Poluentes do Solo , Silicatos de Alumínio , Cádmio/análise , Metais Pesados/análise , Compostos de Potássio , Solo , Poluentes do Solo/análise , TecnologiaRESUMO
This work aims to shed light on the scale-up a combined electrokinetic soil flushing process (EKSF) with permeable reactive barriers (PRB) for the treatment of soil spiked with clopyralid. To do this, remediation tests at lab (3.45 L), bench (175 L) and pilot (1400 L) scales have been carried out. The PRB selected was made of soil merged with particles of zero valent iron (ZVI) and granular activated carbon (GAC). Results show that PRB-EKSF involved electrokinetic transport and dehalogenation as the main mechanisms, while adsorption on GAC was not as relevant as initially expected. Clopyralid was not detected in the electrolyte wells and only in the pilot scale, significant amounts of clopyralid remained in the soil after 600 h of operation. Picolinic acid was the main dehalogenated product detected in the soil after treatment and mobilized by electro-osmosis, mostly to the cathodic well. The transport of volatile compounds into the atmosphere was promoted at pilot scale because of the larger soil surface exposed to the atmosphere and the electrical heating caused by ohmic losses and the larger interelectrode gap.
Assuntos
Recuperação e Remediação Ambiental , Herbicidas , Poluentes do Solo , Carvão Vegetal , Solo , Poluentes do Solo/análiseRESUMO
Sodium percarbonate (SPC, 2Na2CO3â3H2O2), is a compound that can be used under multiple environmental applications. In this work, SPC was employed as oxidant in the treatment of soil contaminated with diesel oil. The soil samples were collected during the earthmoving stage of RNEST Oil Refinery (Petrobras), Brazil. Then, the samples were air-dried, mixed and characterized. Subsequently, raw soil was contaminated with diesel and treated by photo-Fenton reaction (H2O2/Fe2+/UV). SPC played a significant role in the generation of hydroxyl radicals under the catalytic effect of ferrous ions (Fe2+), hydrogen peroxide (H2O2) and radiation. These radicals provoked the photodegradation of polycyclic aromatic hydrocarbons (PAHs), in the soil remediation. A factorial design 33 was carried out to assess the variables which most influenced the decrease in total organic carbon (TOC). The study was performed with the following variables: initial concentration of [H2O2] and [Fe2+], between 190.0 and 950.0 mmol L-1 and 0.0-14.4 mmol L-1, respectively. UV radiation was supplied from sunlight, blacklight lamps, and system without radiation. All experiments were performed with 5.0 g of contaminated soil in 50.0 mL of solution. The initial concentration of Fe2+ showed the statistically most significant effect. The oxidation efficiency evaluated in the best condition showed a decrease from 34,765 mg kg-1 to 15,801 mg kg-1 in TOC and from 85.750 mg kg-1 to 20.770 mg kg-1 in PAHs content. Moreover, the sums of low and high molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs and HMW-PAHs) were 19.537 mg kg-1 and 1.233 mg kg-1, respectively. Both values are within the limits recommended by the United Sates Environmental Protection Agency (USEPA) and evidenced the satisfactory removal of PAHs from contaminated soil, being an alternative to classic oxidation protocols.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Brasil , Carbonatos , Peróxido de Hidrogênio , Oxidantes , Fotólise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análiseRESUMO
In recent years, due to industrial modernization and agricultural mechanization, several environmental consequences have been observed, which make sustainable development difficult. Soil, as an important component of ecosystem and a key resource for the survival of human and animals, has been under constant contamination from different human activities. Contaminated soils and sites require remediation not only because of the hazardous threat it possess to the environment but also due to the shortage of fresh land for both agriculture and urbanization. Combined or coupled remediation technologies are one of the efficient processes for the treatment of contaminated soils. In these technologies, two or more soil remediation techniques are applied simultaneously or sequentially, in which one technique complements the other, making the treatment very efficient. Coupling anodic oxidation (AO) and soil remediation for the treatment of soil contaminated with organics has been studied via two configurations: (i) soil remediation, ex situ AO, where AO is used as a post-treatment stage for the treatment of effluents from soil remediation process and (ii) soil remediation, in situ AO, where both processes are applied simultaneously. The former is the most widely investigated configuration of the combined processes, while the latter is less common due to the greater diffusion dependency of AO as an electrode process. In this review, the concept of soil washing (SW)/soil flushing (SF) and electrokinetic as soil remediation techniques are briefly explained followed by a discussion of different configurations of combined AO and soil remediation.
RESUMO
The search for vegetal species regarding effectiveness in the phytoremediation of soils is of great importance, mainly in function of the great environmental problems, such as soil contamination with heavy metals, the necessity of producing more food, among others that mankind face today. This work aimed (i) to evaluate phytoremediation capacity of Crambe abyssinica Hochst and its growth in soil artificially contaminated with Cd and Pb, and (ii) to evaluate the possible impacts of crambe cultivation in contaminated soil conditions, in order to evaluate, to test, and to question the Brazilian CONAMA 420, providing important information that can be useful for governmental and environmental purposes. Two simultaneous experiments were developed, one for each metal. The soils were contaminated with salts of CdCl2 and PbCl2H2O in five doses based on the investigation values (IV) of CONAMA Resolution 420, resulting in 0; 1.5; 3; 9 and 30 mg kg-1 for Cd and 33; 90; 180; 540 and 1800 mg kg-1 for Pb. Gaseous exchange, development, nutritional composition and production of plant components, as well as phytoavailability of metals, were evaluated. The contamination with metals reduced photosynthesis, increased breathing as well as leading to a negative effect on the mineral nutrition and productivity in general; Plants cultivated in soil with Cd presented higher phytoavailability when compared to those cultivated in the Pb conditions, being found metals in all parts of the crambe plants from 1.5 mg kg- 1 of Cd in the soil; and Pb was retained only in roots, not being translocated in the plant. Cd showed higher phytoavailability, being found in all parts of the plant and Pb was retained only in the roots. Cd showed a higher phytoavailability when compared to Pb, also being found in all parts of crambe plants from dose 1.5 mg kg-1 of Cd in soil, which is an environmental problem, since in these concentrations the cultivation of crops is allowed by Brazilian legislation CONAMA 420.
Assuntos
Crambe (Planta) , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Brasil , Cádmio , Chumbo , SoloRESUMO
Soil pollution with toxic elements is a recurrent issue due to environmental disasters, fossil fuel burning, urbanization, and industrialization, which have contributed to soil contamination over the years. Therefore, the remediation of toxic metals in soil is always an important topic since contaminated soil can affect the environment, agricultural safety, and human health. Many remediation methods have been developed; however, it is essential to ensure that they are safe, and also take into account the limitation of each methodology (including high energy input and generation of residues). This scenario has motivated this review, where we explore soil contamination with arsenic, lead, mercury, and chromium and summarize information about the methods employed to remediate each of these toxic elements such as phytoremediation, soil washing, electrokinetic remediation, and nanoparticles besides elucidating some mechanisms involved in the remediation. Considering all the discussed techniques, nowadays, different techniques can be combined together in order to improve the efficiency of remediation besides the new approach of the techniques and the use of one technique for remediating more than one contaminant.
Assuntos
Recuperação e Remediação Ambiental , Metais Pesados/análise , Nanoestruturas , Poluentes do Solo/análise , Descontaminação , Humanos , SoloRESUMO
This study investigated the reduction of hexavalent chromium (Cr(VI)) in a clayey residual soil using nanoscale zero-valent iron (nZVI). Five different ratios between nZVI and Cr(VI) were tested in batch tests (1000/11; 1000/23; 1000/35; 1000/70, and 1000/140 mg/mg) with the soil. With the selected proportion resulting best efficiency, the column tests were conducted, with molded specimens of 5 cm in diameter and 5 cm in height, with different nZVI injection pressures (10, 30, and 100 kPa). The soil was contaminated with 800 mg/kg of Cr(VI). The Cr(VI) and Cr(III) analyses were performed following the USEPA 3060A and USEPA 7196A standards. The results show that the reduction of Cr(VI) is dependent on the ratio between nZVI and Cr(VI), reaching 98% of efficiency. In column tests, the pressure of 30 kPa was the most efficient. As pressure increased, contaminant leaching increased. The permeability decreased over time due to the gradual increase in filtration and formation of oxyhydroxides, limiting nZVI mobility. Overall, nZVI is efficient for soil remediation with Cr(VI), but the injection process can spread the contaminated if not properly controlled during in situ application.
Assuntos
Cromo/química , Cromo/toxicidade , Argila/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Nanotecnologia/métodos , Poluentes do Solo/toxicidadeRESUMO
Chemical oxidation was applied to an artificially contaminated soil with naphthalene (NAP). Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. The importance of the air phase analysis was emphasized by demonstrating how NAP behaves in a sealed system over a 4 hr reaction period. Design of Experiments method was applied to the following variables: sodium persulfate concentration [SP], ferrous sulfate concentration [FeSO4], and pH. The system operated with a prefixed solid to liquid ratio of 1:2. The following conditions resulted in optimum NAP removal [SP] = 18.37 g/L, [FeSO4] = 4.25 g/L and pH = 3.00. At the end of the 4 hr reaction, 62% of NAP was degraded. In the soil phase, the chemical oxidation reduced the NAP concentration thus achieving levels which comply with Brazilian and USA environmental legislations. Besides the NAP partitioning view, the monitoring of each phase allowed the variabilities assessment over the process, refining the knowledge of mass reduction. Based on NAP distribution in the system, this study demonstrates the importance of evaluating the presence of semi-volatile and volatile organic compounds in the air phase during remediation, so that there is greater control of the system as to the distribution and presence of the contaminant in the environment. The results highlight the importance of treating the contaminant in all its phases at the contaminated site.
Assuntos
Poluentes Ambientais/química , Ferro/química , Naftalenos/química , Solo , Brasil , Compostos Ferrosos , Oxirredução , Sulfatos , ÁguaRESUMO
A rapid bioassay is presented for determining acute toxicity directly in soil. Modifying the Organisation for Economic Cooperation and Development (OECD) protocol 207, it uses a thin layer of moistened soil laid directly in the bottom of the bioassay jar into which the earthworms are placed and incubated. Examples are presented in comparisons between the soil contact bioassay vs. the filter paper bioassay run on Toxicity Characteristic Leaching Procedure (TCLP) extracts of pesticide contaminated soil and petroleum drilling cuttings. In 2,4-dichlorophenoxyacetic acid (2,4-D) contaminated soil (300mg/Kg), no mortality was found in soil extracts, but 100% mortality was found when exposed directly to soil. Treatment with the Daremend® product in five anaerobic/aerobic cycles slowly reduced the 24 h mortality (0%) but still showed 100% mortality at 48 h. However, severe sub-lethal effects (expulsion of celomic/bloody fluids) were reduced from 50% to 37%, and further treatment may reduce the toxicity to acceptable levels. The petroleum drilling cuttings treated by chemical oxidation (1.3% H2O2, w/w) and bioremediation (simulation of biopiles), showed a similar response, where 0% mortality in soil extracts was found, but 100% mortality with soil contact. Post-treatment with chemical oxidation resulted in a reduction in the soil contact bioassay to 3% and 13% mortality, within the accepted range (≤10%) of the OECD protocol. Observations are presented with respect to moisture control to prevent earthworm desiccation and recommendation for confirmation using the sub-chronic test in the OECD protocol but by testing the contaminated/treated soil itself rather than artificial soil.