Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(23): e2300291, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37157943

RESUMO

Phototherapy and sonotherapy are recognized by scientific medicine as effective strategies for treating certain cancers. However, these strategies have limitations such as an inability to penetrate deeper tissues and overcome the antioxidant tumor microenvironment. In this study, a novel "BH" interfacial-confined coordination strategy to synthesize hyaluronic acid-functionalized single copper atoms dispersed over boron imidazolate framework-derived nanocubes (HA-NC_Cu) to achieve sonothermal-catalytic synergistic therapy is reported. Notably, HA-NC_Cu demonstrates exceptional sonothermal conversion performance under low-intensity ultrasound irradiation, attained through intermolecular lattice vibrations. In addition, it shows promise as an efficient biocatalyst, able to generate high-toxicity hydroxyl radicals in response to tumor-endogenous hydrogen peroxide and glutathione. Density functional theory calculations reveal that the superior parallel catalytic performance of HA-NC_Cu originates from the CuN4 C/B active sites. Both in vitro and in vivo evaluations consistently demonstrate that the sonothermal-catalytic synergistic strategy significantly improves tumor inhibition rate (86.9%) and long-term survival rate (100%). In combination with low-intensity ultrasound irradiation, HA-NC_Cu triggers a dual death pathway of apoptosis and ferroptosis in MDA-MB-231 breast cancer cells, comprehensively limiting primary triple-negative breast cancer. This study highlights the applications of single-atom-coordinated nanotherapeutics in sonothermal-catalytic synergistic therapy, which may create new opportunities in biomedical research.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Humanos , Feminino , Cobre/química , Fototerapia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Peróxido de Hidrogênio/química , Microambiente Tumoral
2.
Adv Mater ; 35(31): e2212259, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36812400

RESUMO

Nanomedicine-enabled/augmented ultrasound (US) medicine is a unique area of interdisciplinary research that focuses on designing and engineering functional nanosystems to address the challenging issues in US-based biomedicine, overcoming the shortcomings of traditional microbubbles and optimizing the design of contrast and sonosensitive agents. The single-faceted summary of available US-related therapies is still a significant drawback. Here, The proposal of a comprehensive review on the recent advances of sonosensitive nanomaterials in advancing four US-related biological applications and disease theranostics is aimed. In addition to the mostly explored nanomedicine-enabled/augmented sonodynamic therapy (SDT), the summary and discussion of other sono-therapies and progresses/achievements are relatively lacking, including sonomechanical therapy (SMT), sonopiezoelectric therapy (SPT), and sonothermal therapy (STT). The design concepts of the specific sono-therapies based on nanomedicines are initially introduced. Furthermore, the representative paradigms for nanomedicine-enabled/enhanced US therapies are elaborated according to therapeutic principles and diversity. This review provides an updated and comprehensive review of the field of nanoultrasonic biomedicine, and comprehensively discusses the progress of versatile ultrasonic disease treatments. Finally, the deep discussion on the facing challenges and prospects is expected to promote the emergence and establishment of a new branch of US biomedicine through the rational combination of nanomedicine and US clinical biomedicine.


Assuntos
Nanoestruturas , Neoplasias , Terapia por Ultrassom , Humanos , Nanomedicina , Ultrassonografia , Neoplasias/terapia , Neoplasias/tratamento farmacológico
3.
Acta Biomater ; 158: 811-826, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572249

RESUMO

Chemodynamic therapy (CDT) employs Fenton catalysts to kill bacteria by converting hydrogen peroxide (H2O2) into toxic hydroxyl radical (•OH). Among them, Fenton-type metal peroxide nanoparticles fascinate nanomaterials with intriguing physiochemical properties, but research on this antibacterial agent is still in its infancy. Herein, a distinct CuO2/TiO2 heterostructure constituted of ultrasmall copper peroxide (CuO2) nanoclusters and sonosensitized ultrathin oxygen vacancy-rich porous titanium oxide (OV-TiO2) nanosheets was developed and was incorporated into microneedles for bilaterally augmented sono-chemodynamic and sonothermal antibacterial therapy. Engineering CuO2 nanoclusters on the surface of TiO2 nanosheets not only endows the Fenton catalytic activity for sono-chemodynamic therapy (SCDT), but also improves the sonodynamic and sonothermal performance of TiO2 by narrowing the bandgap of TiO2 and suppressing the recombination of electron-hole pairs. The high efficacy of this CuO2/TiO2 integrated microneedle (CTMN) patch was systematically demonstrated both in vitro and in vivo with the eliminating rate >99.9999% against multidrug resistant (MDR) pathogens in 5 min as well as accelerated wound tissue healing. This work highlights a promisingly new and efficient strategy for the development of sonosensitive and chemoreactive nanomedicine for non-antibiotic therapies. STATEMENT OF SIGNIFICANCE: Feton-type metal peroxides, a novel nanomaterial with self-supplied oxygen and hydrogen peroxide, can achieve effective antimicrobial activity in vitro. However, there is a lack of effective nanomaterial delivery systems and suitable means for in vivo activation/enhancement of antimicrobial activity during bacterial infected skin wound treatment. In this study, we designed and prepared efficient ultrasound activable microneedles that effectively addressed the deficiencies mentioned above and established a new paradigm for efficient utilization of metal peroxide nanomaterials and ultrasound based strategies. Noticeably, copper peroxide nanoclusters/oxygen vacancy-rich porous titanium oxide nanosheets (CuO2/TiO2) integrated microneedle (CTMN) patch combines advantages of both sono-chemodynamic and sonothermal antibacterial therapy, achieving one of the most instant and effective antibacterial efficacy (>99.9999% in 5 min) in vivo reported till now.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Cobre/farmacologia , Peróxidos , Antibacterianos/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA