Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 179: 106047, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841423

RESUMO

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.


Assuntos
Doença de Alzheimer , Encéfalo , Conectoma , Demência Frontotemporal , Vias Neurais , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Eletroencefalografia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/metabolismo , Demência Frontotemporal/fisiopatologia , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Reprodutibilidade dos Testes , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA