Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Microbiol Spectr ; 12(4): e0285923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415690

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes several host proteases to cleave the spike (S) protein to enter host cells. SARS-CoV-2 S protein is cleaved into S1 and S2 subunits by furin, which is closely involved in the pathogenicity of SARS-CoV-2. However, the effects of the modulated protease cleavage activity due to S protein mutations on viral replication and pathogenesis remain unclear. Herein, we serially passaged two SARS-CoV-2 strains in Vero cells and characterized the cell-adapted SARS-CoV-2 strains in vitro and in vivo. The adapted strains showed high viral growth, effective S1/S2 cleavage of the S protein, and low pathogenicity compared with the wild-type strain. Furthermore, the viral growth and S1/S2 cleavage were enhanced by the combination of the Δ68-76 and H655Y mutations using recombinant SARS-CoV-2 strains generated by the circular polymerase extension reaction. The recombinant SARS-CoV-2 strain, which contained the mutation of the adapted strain, showed increased susceptibility to the furin inhibitor, suggesting that the adapted SARS-CoV-2 strain utilized furin more effectively than the wild-type strain. Pathogenicity was attenuated by infection with effectively cleaved recombinant SARS-CoV-2 strains, suggesting that the excessive cleavage of the S proteins decreases virulence. Finally, the high-growth-adapted SARS-CoV-2 strain could be used as the seed for a low-cost inactivated vaccine; immunization with this vaccine can effectively protect the host from SARS-CoV-2 variants. Our findings provide novel insights into the growth and pathogenicity of SARS-CoV-2 in the evolution of cell-cell transmission. IMPORTANCE: The efficacy of the S protein cleavage generally differs among the SARS-CoV-2 variants, resulting in distinct viral characteristics. The relationship between a mutation and the entry of SARS-CoV-2 into host cells remains unclear. In this study, we analyzed the sequence of high-growth Vero cell-adapted SARS-CoV-2 and factors determining the enhancement of the growth of the adapted virus and confirmed the characteristics of the adapted strain by analyzing the recombinant SARS-CoV-2 strain. We successfully identified mutations Δ68-76 and H655Y, which enhance viral growth and the S protein cleavage by furin. Using recombinant viruses enabled us to conduct a virus challenge experiment in vivo. The pathogenicity of SARS-CoV-2 introduced with the mutations Δ68-76, H655Y, P812L, and Q853L was attenuated in hamsters, indicating the possibility of the attenuation of excessive cleaved SARS-CoV-2. These findings provide novel insights into the infectivity and pathogenesis of SARS-CoV-2 strains, thereby significantly contributing to the field of virology.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Chlorocebus aethiops , Humanos , Células Vero , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Furina/metabolismo
2.
Bioinformation ; 19(3): 251-254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808373

RESUMO

Cases of the respiratory syncytial virus (RSV), monkeypox virus (MPXV), and avian influenza A Virus (IAV) have increased during our current prolonged Corona Virus Disease 2019 (CoViD-19) pandemic. The rise of these viral infectious diseases may be associated or even inter-dependent with acute, latent or recurrent infection with Systemic Acute Respiratory Syndrome Corona virus-2 (SARS-CoV2). The nonsensical neologism 'tripledemic' was tentatively introduced to describe the confluent nature of these trends (epidemic comes from two Greek words: epi=on, about, demos=people; pandemic is also derived from Ancient Greek: pan=all, demos=people; but 'tripledemic' would derive from Latin triplus=three, Greek demos=people, and would at best signify 'three countries, three peoples', but certainly not the current threat of confluence of three, or perhaps more pandemics). Emerging evidence suggests that monkey pox and CoViD-19, among several other viral diseases, produce significant observable manifestations in the oral cavity. From a clinical standpoint, dentists and dental personnel may be among the first health professionals to encounter and diagnose clinical signs of converging infections. From the immune surveillance viewpoint, viral recombination and viral interference among these infectious diseases must be examined to determine the potential threat of these colliding pandemics.

3.
Viruses ; 15(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851491

RESUMO

Understanding how geography and human mobility shape the patterns and spread of infectious diseases such as COVID-19 is key to control future epidemics. An interesting example is provided by the second wave of the COVID-19 epidemic in Europe, which was facilitated by the intense movement of tourists around the Mediterranean coast in summer 2020. The Italian island of Sardinia is a major tourist destination and is widely believed to be the origin of the second Italian wave. In this study, we characterize the genetic variation among SARS-CoV-2 strains circulating in northern Sardinia during the first and second Italian waves using both Illumina and Oxford Nanopore Technologies Next Generation Sequencing methods. Most viruses were placed into a single clade, implying that despite substantial virus inflow, most outbreaks did not spread widely. The second epidemic wave on the island was actually driven by local transmission of a single B.1.177 subclade. Phylogeographic analyses further suggest that those viral strains circulating on the island were not a relevant source for the second epidemic wave in Italy. This result, however, does not rule out the possibility of intense mixing and transmission of the virus among tourists as a major contributor to the second Italian wave.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Epidemiologia Molecular , Itália/epidemiologia , Filogeografia , Variação Genética
4.
Mol Divers ; 27(2): 695-708, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35616802

RESUMO

SARS, or severe acute respiratory syndrome, is caused by a novel coronavirus (COVID-19). This situation has compelled many pharmaceutical R&D companies and public health research sectors to focus their efforts on developing effective therapeutics. SARS-nCoV-2 was chosen as a protein spike to targeted monoclonal antibodies and therapeutics for prevention and treatment. Deep mutational scanning created a monoclonal antibody to characterize the effects of mutations in a variable antibody fragment based on its expression levels, specificity, stability, and affinity for specific antigenic conserved epitopes to the Spike-S-Receptor Binding Domain (RBD). Improved contacts between Fv light and heavy chains and the targeted antigens of RBD could result in a highly potent neutralizing antibody (NAbs) response as well as cross-protection against other SARS-nCoV-2 strains. It undergoes multipoint core mutations that combine enhancing mutations, resulting in increased binding affinity and significantly increased stability between RBD and antibody. In addition, we improved. Structures of variable fragment (Fv) complexed with the RBD of Spike protein were subjected to our established in-silico antibody-engineering platform to obtain enhanced binding affinity to SARS-nCoV-2 and develop ability profiling. We found that the size and three-dimensional shape of epitopes significantly impacted the activity of antibodies produced against the RBD of Spike protein. Overall, because of the conformational changes between RBD and hACE2, it prevents viral entry. As a result of this in-silico study, the designed antibody can be used as a promising therapeutic strategy to treat COVID-19.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Epitopos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/metabolismo , SARS-CoV-2/metabolismo , Ligação Proteica
5.
Virol J ; 19(1): 227, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581924

RESUMO

BACKGROUND: The paucity of SARS-CoV-2-specific virulence factors has greatly hampered the therapeutic management of patients with COVID-19 disease. Although available vaccines and approved therapies have shown tremendous benefits, the continuous emergence of new variants of SARS-CoV-2 and side effects of existing treatments continue to challenge therapy, necessitating the development of a novel effective therapy. We have previously shown that our developed novel single-stranded DNA aptamers not only target the trimer S protein of SARS-CoV-2, but also block the interaction between ACE2 receptors and trimer S protein of Wuhan origin, Delta, Delta plus, Alpha, Lambda, Mu, and Omicron variants of SARS-CoV-2. We herein performed in vivo experiments that administer the aptamer to the lungs by intubation as well as in vitro studies utilizing PBMCs to prove the efficacy and safety of our most effective aptamer, AYA2012004_L. METHODS: In vivo studies were conducted in transgenic mice expressing human ACE2 (K18hACE2), C57BL/6J, and Balb/cJ. Flow cytometry was used to check S-protein expressing pseudo-virus-like particles (VLP) uptake by the lung cells and test the immuogenicity of AYA2012004_L. Ames test was used to assess mutagenicity of AYA2012004_L. RT-PCR and histopathology were used to determine the biodistribution and toxicity of AYA2012004_L in vital organs of mice. RESULTS: We measured the in vivo uptake of VLPs by lung cells by detecting GFP signal using flow cytometry. AYA2012004_L specifically neutralized VLP uptake and also showed no inflammatory response in mice lungs. In addition, AYA2012004_L did not induce inflammatory response in the lungs of Th1 and Th2 mouse models as well as human PBMCs. AYA2012004_L was detectable in mice lungs and noticeable in insignificant amounts in other vital organs. Accumulation of AYA2012004_L in organs decreased over time. AYA2012004_L did not induce degenerative signs in tissues as seen by histopathology and did not cause changes in the body weight of mice. Ames test also certified that AYA2012004_L is non-mutagenic and proved it to be safe for in vivo studies. CONCLUSIONS: Our aptamer is safe, effective, and can neutralize the uptake of VLPs by lung cells when administered locally suggesting that it can be used as a potential therapeutic agent for COVID-19 management.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Humanos , Camundongos , Animais , COVID-19/terapia , SARS-CoV-2/genética , Aptâmeros de Nucleotídeos/uso terapêutico , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Distribuição Tecidual , Anticorpos Antivirais , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
6.
J Biomed Sci ; 29(1): 108, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550570

RESUMO

BACKGROUND: The variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) harbor diverse spike (S) protein sequences, which can greatly influence the efficacies of therapeutics. Therefore, it would be of great value to develop neutralizing monoclonal antibodies (mAbs) that can broadly recognize multiple variants. METHODS: Using an mRNA-LNP immunization strategy, we generated several mAbs that specifically target the conserved S2 subunit of SARS-CoV-2 (B-S2-mAbs). These mAbs were assessed for their neutralizing activity with pseudotyped viruses and binding ability for SARS-CoV-2 variants. RESULTS: Among these mAbs, five exhibited strong neutralizing ability toward the Gamma variant and also recognized viral S proteins from the Wuhan, Alpha, Beta, Gamma, Delta and Omicron (BA.1, BA.2 and BA.5) variants. Furthermore, we demonstrated the broad reactivities of these B-S2-mAbs in several different applications, including immunosorbent, immunofluorescence and immunoblotting assays. In particular, B-S2-mAb-2 exhibited potent neutralization of Gamma variant (IC50 = 0.048 µg/ml) in a pseudovirus neutralization assay. The neutralizing epitope of B-S2-mAb-2 was identified by phage display as amino acid residues 1146-1152 (DSFKEEL) in the S2 subunit HR2 domain of SARS-CoV-2. CONCLUSION: Since there are not many mAbs that can bind the S2 subunit of SARS-CoV-2 variants, our set of B-S2-mAbs may provide important materials for basic research and potential clinical applications. Importantly, our study results demonstrate that the viral S2 subunit can be targeted for the production of cross-reactive antibodies, which may be used for coronavirus detection and neutralization.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Monoclonais/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
7.
Front Immunol ; 13: 969193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225921

RESUMO

Background: The SARS-CoV-2 pandemic increased mortality and morbidity among immunocompromised populations. Vaccination is the most important preventive measure, however, its effectiveness among patients depending on maintenance immunoglobulin G (IgG) apheresis to control autoimmune disease activity is unknown. We aimed to examine the humoral immune response after mRNA-1273 Moderna® vaccination in immunoapheresis patients. Methods: We prospectively monitored SARS-CoV-2 IgG spike (S) protein antibody levels before and after each IgG (exposure) or lipid (LDL) apheresis (controls) over 12 weeks and once after 24 weeks. Primary outcome was the difference of change of SARS-CoV-2 IgG S antibody levels from vaccination until week 12, secondary outcome was the difference of change of SARS-CoV-2 IgG S antibody levels by apheresis treatments across groups. Results: We included 6 IgG and 18 LDL apheresis patients. After 12 weeks the median SARS-CoV-2 IgG S antibody level was 115 (IQR: 0.74, 258) in the IgG and 1216 (IQR: 788, 2178) in the LDL group (p=0.03). Median SARS-CoV-2 IgG S antibody reduction by apheresis was 76.4 vs. 23.7% in the IgG and LDL group (p=0.04). The average post- vs. pre-treatment SARS-CoV-2 IgG S antibody rebound in the IgG group vs. the LDL group was 46.1 and 6.44%/week from prior until week 12 visit. Conclusions: IgG apheresis patients had lower SARS-CoV-2 IgG S antibody levels compared to LDL apheresis patients, but recovered appropriately between treatment sessions. We believe that IgG apheresis itself probably has less effect on maintaining the immune response compared to concomitant immunosuppressive drugs. Immunization is recommended independent of apheresis treatment.


Assuntos
COVID-19 , Imunoglobulina G , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Estudos de Coortes , Humanos , Lipídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
Front Immunol ; 13: 879946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693806

RESUMO

The currently devastating pandemic of severe acute respiratory syndrome known as coronavirus disease 2019 or COVID-19 is caused by the coronavirus SARS-CoV-2. Both the virus and the disease have been extensively studied worldwide. A trimeric spike (S) protein expressed on the virus outer bilayer leaflet has been identified as a ligand that allows the virus to penetrate human host cells and cause infection. Its receptor-binding domain (RBD) interacts with the angiotensin-converting enzyme 2 (ACE2), the host-cell viral receptor, and is, therefore, the subject of intense research for the development of virus control means, particularly vaccines. In this work, we search for smaller fragments of the S protein able to elicit virus-neutralizing antibodies, suitable for production by peptide synthesis technology. Based on the analysis of available data, we selected a 72 aa long receptor binding motif (RBM436-507) of RBD. We used ELISA to study the antibody response to each of the three antigens (S protein, its RBD domain and the RBM436-507 synthetic peptide) in humans exposed to the infection and in immunized mice. The seroreactivity analysis showed that anti-RBM antibodies are produced in COVID-19 patients and immunized mice and may exert neutralizing function, although with a frequency lower than anti-S and -RBD. These results provide a basis for further studies towards the development of vaccines or treatments focused on specific regions of the S virus protein, which can benefit from the absence of folding problems, conformational constraints and other advantages of the peptide synthesis production.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , Humanos , Camundongos , Peptídeos , Glicoproteína da Espícula de Coronavírus
9.
Front Immunol ; 13: 901217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711449

RESUMO

Fc-mediated virus entry has been observed for many viruses, but the characterization of this activity in convalescent plasma against SARS-CoV-2 Variants of Concern (VOC) is undefined. In this study, we evaluated Fc-mediated viral entry (FVE) on FcγRIIa-expressing HEK293 cells in the presence of SARS-CoV-2 convalescent plasma and compared it with SARS-CoV-2 pseudovirus neutralization using ACE2-expressing HEK293 cells. The plasma were collected early in the pandemic from 39 individuals. We observed both neutralization and FVE against the infecting Washington SARS-CoV-2 strain for 31% of plasmas, neutralization, but not FVE for 61% of plasmas, and no neutralization or FVE for 8% of plasmas. Neutralization titer correlated significantly with the plasma dilution at which maximum FVE was observed, indicating Fc-mediated uptake peaked as neutralization potency waned. While total Spike-specific plasma IgG levels were similar between plasma that mediated FVE and those that did not, Spike-specific plasma IgM levels were significantly higher in plasma that did not mediate FVE. Plasma neutralization titers against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) VOC were significantly lower than titers against the Washington strain, while plasma FVE activity against the VOC was either higher or similar. This is the first report to demonstrate a functional shift in convalescent plasma antibodies from neutralizing and FVE-mediating against the earlier Washington strain, to an activity mediating only FVE and no neutralization activity against the emerging VOC, specifically the Beta (B.1.351) and Gamma (P.1) VOC. It will be important to determine the in vivo relevance of these findings.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/terapia , Células HEK293 , Humanos , Imunização Passiva , Fragmentos Fc das Imunoglobulinas , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Soroterapia para COVID-19
10.
Front Cell Infect Microbiol ; 12: 748948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711666

RESUMO

Viruses rapidly co-evolve with their hosts. The 9 million sequenced SARS-CoV-2 genomes by March 2022 provide a detailed account of viral evolution, showing that all amino acids have been mutated many times. However, only a few became prominent in the viral population. Here, we investigated the emergence of the same mutations in unrelated parallel lineages and the extent of such convergent evolution on the molecular level in the spike (S) protein. We found that during the first phase of the pandemic (until mid 2021, before mass vaccination) 31 mutations evolved independently ≥3-times within separated lineages. These included all the key mutations in SARS-CoV-2 variants of concern (VOC) at that time, indicating their fundamental adaptive advantage. The omicron added many more mutations not frequently seen before, which can be attributed to the synergistic nature of these mutations, which is more difficult to evolve. The great majority (24/31) of S-protein mutations under convergent evolution tightly cluster in three functional domains; N-terminal domain, receptor-binding domain, and Furin cleavage site. Furthermore, among the S-protein receptor-binding motif mutations, ACE2 affinity-improving substitutions are favoured. Next, we determined the mutation space in the S protein that has been covered by SARS-CoV-2. We found that all amino acids that are reachable by single nucleotide changes have been probed multiple times in early 2021. The substitutions requiring two nucleotide changes have recently (late 2021) gained momentum and their numbers are increasing rapidly. These provide a large mutation landscape for SARS-CoV-2 future evolution, on which research should focus now.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Aminoácidos , Mutação , Nucleotídeos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
11.
Front Cell Infect Microbiol ; 12: 822599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493733

RESUMO

For the clinical application of semi-quantitative anti-SARS-CoV-2 antibody tests, the analytical performance and titer correlation of the plaque reduction neutralization test (PRNT) need to be investigated. We evaluated the analytical performance and PRNT titer-correlation of one surrogate virus neutralization test (sVNT) kit and three chemiluminescent assays. We measured the total antibodies for the receptor-binding domain (RBD) of the spike protein, total antibodies for the nucleocapsid protein (NP), and IgG antibodies for the RBD. All three chemiluminescent assays showed high analytical performance for the detection of SARS-CoV-2 infection, with a sensitivity ≥ 98% and specificity ≥ 99%; those of the sVNT were slightly lower. The representativeness of the neutralizing activity of PRNT ND50 ≥ 20 was comparable among the four immunoassays (Cohen's kappa ≈ 0.80). Quantitative titer correlation for high PRNT titers of ND50 ≥ 50, 200, and 1,000 was investigated with new cut-off values; the anti-RBD IgG antibody kit showed the best performance. It also showed the best linear correlation with PRNT titer in both the acute and convalescent phases (Pearson's R 0.81 and 0.72, respectively). Due to the slowly waning titer of anti-NP antibodies, the correlation with PRNT titer at the convalescent phase was poor. In conclusion, semi-quantitative immunoassay kits targeting the RBD showed neutralizing activity that was correlated by titer; measurement of anti-NP antibodies would be useful for determining past infections.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Imunoensaio , Testes de Neutralização , Proteínas do Nucleocapsídeo , SARS-CoV-2
12.
Front Mol Biosci ; 9: 799703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372520

RESUMO

Glycans on the host cell membrane and viral proteins play critical roles in pathogenesis. Highly glycosylated epithelial cells represent the primary boundary separating embedded host tissues from pathogens within the respiratory and intestinal tracts. SARS-CoV-2, the causative agent for the COVID-19 pandemic, reaches into the respiratory tract. We found purified human milk oligosaccharides (HMOs) inhibited the viral binding on cells. Spike (S) protein receptor binding domain (RBD) binding to host cells were partly blocked by co-incubation with exogenous HMOs, most by 2-6-sialyl-lactose (6'SL), supporting the notion that HMOs can function as decoys in defense against SARS-Cov2. To investigate the effect of host cell glycocalyx on viral adherence, we metabolically modified and confirmed with glycomic methods the cell surface glycome to enrich specific N-glycan types including those containing sialic acids, fucose, mannose, and terminal galactose. Additionally, Immunofluorescence studies demonstrated that the S protein preferentially binds to terminal sialic acids with α-(2,6)-linkages. Furthermore, site-specific glycosylation of S protein RBD and its human receptor ACE2 were characterized using LC-MS/MS. We then performed molecular dynamics calculations on the interaction complex to further explore the interactive complex between ACE2 and the S protein. The results showed that hydrogen bonds mediated the interactions between ACE2 glycans and S protein with desialylated glycans forming significantly fewer hydrogen bonds. These results supported a mechanism where the virus binds initially to glycans on host cells preferring α-(2,6)-sialic acids and finds ACE2 and with the proper orientation infects the cell.

13.
Microbiol Spectr ; 10(2): e0181421, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35293796

RESUMO

Most of SARS-CoV-2 neutralizing antibodies (nAbs) targeted the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, mutations at RBD sequences found in the emerging SARS-CoV-2 variants greatly reduced the effectiveness of nAbs. Here we showed that four nAbs, S2-4D, S2-5D, S2-8D, and S2-4A, which recognized a conserved epitope in the S2 subunit of the S protein, can inhibit SARS-CoV-2 infection through blocking the S protein-mediated membrane fusion. Notably, these four nAbs exhibited broadly neutralizing activity against SARS-CoV-2 Alpha, Gamma, Delta, and Epsilon variants. Antisera collected from mice immunized with the identified epitope peptides of these four nAbs also exhibited potent virus neutralizing activity. Discovery of the S2-specific nAbs and their unique antigenic epitopes paves a new path for development of COVID-19 therapeutics and vaccines. IMPORTANCE The spike (S) protein on the surface of SARS-CoV-2 mediates receptor binding and virus-host cell membrane fusion during virus entry. Many neutralizing antibodies (nAbs), which targeted the receptor binding domain (RBD) of S protein, lost the neutralizing activity against the newly emerging SARS-CoV-2 variants with sequence mutations at the RBD. In contrast, the nAb against the highly conserved S2 subunit, which plays the key role in virus-host cell membrane fusion, was poorly discovered. We showed that four S2-specific nAbs, S2-4D, S2-5D, S2-8D, and S2-4A, inhibited SARS-CoV-2 infection through blocking the S protein-mediated membrane fusion. These nAbs exhibited broadly neutralizing activity against Alpha, Gamma, Delta, and Epsilon variants. Antisera induced by the identified epitope peptides also possessed potent neutralizing activity. This work not only unveiled the S2-specific nAbs but also discovered an immunodominant epitope in the S2 subunit that can be rationally designed as the broad-spectrum vaccine against the SARS-like coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Soros Imunes , Fusão de Membrana , Camundongos , Glicoproteína da Espícula de Coronavírus/genética
14.
Molecules ; 27(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335246

RESUMO

The S protein of SARS-CoV-2 is a crucial structural and functional component for virus entry. Due to the constant mutation of the virus, there are very limited ways to prevent and control COVID-19. This experiment used a macroscopic SDS-PAGE method and proved that the S protein of wild-type SARS-CoV-2 virus, especially the S1 subunit, is very sensitive to alkaline serine protease with acidic pI (ASPNJ), NJ represents Neanthes japonica (Izuka) from which ASP is purified). ASPNJ cleaves proteins when the carbonyl group of the peptide bond is contributed by arginine or lysine. ASPNJ can degrade the S protein very quickly and effectively in vitro with relative selectivity. It can be inferred that the S, S1 and RBD of SARS-CoV-2 variants can also be easily degraded by ASPNJ. This rapid and strong degradation of the S protein by ASPNJ may become a potential new treatment strategy.


Assuntos
COVID-19 , Serina Proteases , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2 , Serina Proteases/genética , Proteínas do Envelope Viral/metabolismo
15.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159253

RESUMO

In this contribution, we report on the possibility that cryptococcal protease(s) could activate the SARS-CoV-2 spike (S) protein. The S protein is documented to have a unique four-amino-acid sequence (underlined, SPRRAR↓S) at the interface between the S1 and S2 sites, that serves as a cleavage site for the human protease, furin. We compared the biochemical efficiency of cryptococcal protease(s) and furin to mediate the proteolytic cleavage of the S1/S2 site in a fluorogenic peptide. We show that cryptococcal protease(s) processes this site in a manner comparable to the efficiency of furin (p > 0.581). We conclude the paper by discussing the impact of these findings in the context of a SARS-CoV-2 disease manifesting while there is an underlying cryptococcal infection.


Assuntos
Ácido Aspártico Proteases/metabolismo , Proteínas de Bactérias/metabolismo , Cryptococcus neoformans/enzimologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Ácido Aspártico Proteases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Cryptococcus neoformans/genética , Corantes Fluorescentes/química , Furina/genética , Furina/metabolismo , Humanos , Pandemias , Peptídeos/química , Peptídeos/metabolismo , Proteólise , SARS-CoV-2/fisiologia
16.
AMB Express ; 12(1): 18, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150368

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, a series of vaccines, antibodies and drugs have been developed to combat coronavirus disease 2019 (COVID-19). High specific antibodies are powerful tool for the development of immunoassay and providing passive immunotherapy against SARS-CoV-2 and expected with large scale production. SARS-CoV-2 S1 protein was expressed in E. coli BL21 and purified by immobilized metal affinity chromatography, as antigen used to immunize hens, the specific IgY antibodies were extracted form egg yolk by PEG-6000 precipitation, and the titer of anti-S1 IgY antibody reached 1:10,000. IgY single chain variable fragment antibody (IgY-scFv) was generated by using phage display technology and the IgY-scFv showed high binding sensitivity and capacity to S1 protein of SARS-CoV-2, and the minimum detectable antigen S1 protein concentration was 6 ng/µL. The docking study showed that the multiple epitopes on the IgY-scFv interacted with multiple residues on SARS-CoV-2 S1 RBD to form hydrogen bonds. This preliminary study suggests that IgY and IgY-scFv are suitable candidates for the development of immunoassay and passive immunotherapy for COVID-19 to humans and animals.

17.
Ultrastruct Pathol ; 46(1): 1-17, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35139747

RESUMO

Research centers around the world are competing to develop therapeutic and prophylactic agents to provide new intervention strategies that could halt or even help slow the progression of the COVID19 pandemic. This requires a deep understanding of the biology and cytopathology of the interaction of SARS-CoV-2 with the cell. This review highlights the importance of electron microscopy (EM) in better understanding the morphology, the subcellular morphogenesis, and pathogenesis of SARS-CoV-2, given its nanometric dimensions. The study also underscores the value of cryo-electron microscopy for analyzing the structure of viral protein complex at atomic resolution in its native state and the development of novel antibodies, vaccines, and therapies targeting the trimeric S spike proteins and the viral replication organelles. This review highlighted the emergence in a short period of time of several viral variants of concern with enhanced transmissibility and increased infectivity. This is due to the elevated affinity of the host receptor with acquired adaptive mutations in the spike protein gene of the virus.Subsequently, to the technical improvement of EM resolutions and the recent promising results with SARS-CoV2 variant structure determination, antibodies production, and vaccine development, it is necessary to maximize our investigations regarding the potential occurrence of immune pressure and viral adaptation secondary to repeated infection and vaccination.


Assuntos
COVID-19 , SARS-CoV-2 , Microscopia Crioeletrônica , Humanos , Microscopia Eletrônica , RNA Viral
18.
Viruses ; 14(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062329

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes devastating enteric disease that inflicts huge economic damage on the swine industry worldwide. A safe and highly effective PEDV vaccine that contains only the virus-neutralizing epitopes (not enhancing epitope), as well as a ready-to-use PEDV neutralizing antibody for the passive immunization of PEDV vulnerable piglets (during the first week of life) are needed, particularly for PEDV-endemic farms. In this study, we generated monoclonal antibodies (mAbs) to the recombinant S1 domain of PEDV spike (S) protein and tested their PEDV neutralizing activity by CPE-reduction assay. The mAb secreted by one hybrodoma clone (A3), that also bound to the native S1 counterpart from PEDV-infected cells (tested by combined co-immunoprecipitation and Western blotting), neutralized PEDV infectivity. Epitope of the neutralizing mAb (mAbA3) locates in the S1A subdomain of the spike protein, as identified by phage mimotope search and multiple sequence alignment, and peptide binding-ELISA. The newly identified epitope is shared by PEDV G1 and G2 strains and other alphacoronaviruses. In summary, mAbA3 may be useful as a ready-to-use antibody for passive immunization of PEDV-susceptible piglets, while the novel neutralizing epitope, together with other, previously known protective epitopes, have potential as an immunogenic cocktail for a safe, next-generation PEDV vaccine.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Imunoglobulina M/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Feminino , Células HeLa , Humanos , Imunização Passiva , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Suínos , Doenças dos Suínos/imunologia , Células Vero
19.
J Biomol Struct Dyn ; 40(14): 6671-6681, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33645443

RESUMO

The disease COVID-19 has caused heavy socio-economic burden and there is immediate need to control it. The disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The viral entry into human cell depends on the attachment of spike (S) protein via its receptor binding domain (RBD) to human cell receptor angiotensin-converting enzyme 2 (hACE2). Thus, blocking the virus attachment to hACE2 could serve as potential therapeutics for viral infection. We have designed a peptide inhibitor (ΔABP-α2) targeting the RBD of S protein using in-silico approach. Docking studies and computed affinities suggested that peptide inhibitor binds at the RBD with ∼95-fold higher affinity than hACE2. Molecular dynamics (MD) simulation confirms the stable binding of inhibitor to hACE2. Immunoinformatics studies suggest non-immunogenic and non-toxic nature of peptide. Thus, the proposed peptide could serve as potential blocker for viral attachment.Communicated by Ramaswamy H. Sarma.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Sítios de Ligação , Humanos , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
J Infect Public Health ; 15(1): 123-131, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34742639

RESUMO

More than 125 million confirmed cases of COVID-19 have been reported globally with rising cases in all countries since the first case was reported. A vaccine is the best measure for the effective prevention and control of COVID-19. There are more than 292 COVID-19 candidates' vaccines being developed as of July 2021 of which 184 are in human preclinical trials. A patent provides protection and a marketing monopoly to the inventor of an invention for a specified period. Therefore, vaccine developers, including Moderna, BioNTech, Janssen, Inovio, and Gamaleya also filed patent applications for the protection of their vaccines. This review aims to provide an insight into the patent literature of COVID-19 vaccines. The patent search was done using Patentscope and Espacenet databases. The results have revealed that most of the key players have patented their inventive COVID-19 vaccine. Many patent applications related to COVID-19 vaccines developed via different technologies (DNA, RNA, virus, bacteria, and protein subunit) have also been filed. The publication of a normal patent application takes place after 18 months of its filing. Therefore, many patents/patent applications related to the COVID-19 vaccine developed through different technology may come into the public domain in the coming days.


Assuntos
COVID-19 , Vacinas , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA