Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(33): 21804-21835, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116003

RESUMO

Covalent organic frameworks (COFs) are crystalline networks with extended backbones cross-linked by covalent bonds. Due to the semiconductive properties and variable metal coordinating sites, along with the rapid development in linkage chemistry, the utilization of COFs in photocatalytic CO2RR has attracted many scientists' interests. In this Review, we summarize the latest research progress on variable COFs for photocatalytic CO2 reduction. In the first part, we present the development of COF linkages that have been used in CO2RR, and we discuss four mechanisms including COFs as intrinsic photocatalysts, COFs with photosensitive motifs as photocatalysts, metalated COF photocatalysts, and COFs with semiconductors as heterojunction photocatalysts. Then, we summarize the principles of structural designs including functional building units and stacking mode exchange. Finally, the outlook and challenges have been provided. This Review is intended to give some guidance on the design and synthesis of diverse COFs with different linkages, various structures, and divergent stacking modes for the efficient photoreduction of CO2.

2.
Small ; : e2402236, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970543

RESUMO

A new methodological design is proposed for carbon dots (CDs)-based crystallization-induced phosphorescence (CIP) materials via one-step self-assembled packaging controlled by NH4 +. O-phenylenediamine (o-PD) as a nitrogen/carbon source and the ammonium salts as oxidants are used to obtain CDs supramolecular crystals with a well-defined staircase-like morphology, pink fluorescence and ultralong green room-temperature phosphorescence (RTP) (733.56 ms) that is the first highest value for CDs-based CIP materials using pure nitrogen/carbon source by one-step packaging. Wherein, NH4 + and o-PD-derived oxidative polymers are prerequisites for self-assembled crystallization so as to receive the ultralong RTP. Density functional theory calculation indicates that NH4 + tends to anchor to the dimer on the surface state of CDs and guides CDs to cross-arrange in an X-type stacking mode, leading to the spatially separated frontier orbitals and the through-space charge transfer (TSCT) excited state in turn. Such a self-assembled mode contributes to both the small singlet-triplet energy gap (ΔEST) and the fast inter-system crossing (ISC) process that is directly related to ultralong RTP. This work not only proposes a new strategy to prepare CDs-based CIP materials in one step but also reveals the potential for the self-assembled behavior controlled by NH4 +.

3.
Angew Chem Int Ed Engl ; 63(38): e202408453, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38941108

RESUMO

Layer-stacking behaviors are crucial for two-dimensional covalent organic frameworks (2D COFs) to define their pore structure, physicochemical properties, and functional output. So far, fine control over the stacking mode without complex procedures remains a grand challenge. Herein, we proposed a "key-cylinder lock mimic" strategy to synthesize 2D COFs with a tunable layer-stacking mode by taking advantage of ionic liquids (ILs). The staggered (AB) stacking (unlocked) COFs were exclusively obtained by incorporating ILs of symmetric polarity and matching molecular size; otherwise, commonly reported eclipsed (AA) stacking (locked) COFs were observed instead. Mechanistic study revealed that AB stacking was induced by a confined interlocking effect (CIE) brought by anions and bulky cations of the ILs inside pores ("key" and "cylinder", respectively). Excitingly, this strategy can speed up production rate of crystalline powders (e.g., COF-TAPT-Tf@BmimTf2N in merely 30 minutes) under mild reaction conditions. This work highlights the enabling role of ILs to tailor the layer stacking of 2D COFs and promotes further exploration of their stacking mode-dependant applications.

4.
Sci Rep ; 14(1): 10619, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724616

RESUMO

Hexagonal boron nitride (h-BN) is a semiconductor material with a wide band gap, which has great potential to serve as a nanoresonators in microelectronics and mass and force sensing fields. This paper investigates the mechanical properties and natural frequencies of bilayer h-BN nanosheets under five different stacking modes, which have been rarely studied, using molecular dynamics simulations. The mechanical properties, including Young's modulus, the ultimate stress, ultimate strain, Poisson's ratio and shear modulus, are studied for all five stacking modes. And the effects of strain rate, crystal orientation and temperature to bilayer h-BN nanosheets' tensile properties have also been studied. Our findings suggest that bilayer h-BN nanosheets are basically an anisotropic material whose tensile properties vary substantially with stacking modes and temperature. Moreover, the natural frequencies are proposed in an explicit form based on the nonlocal theory. The differences of the fundamental natural frequencies among different stacking modes are affected by the constraint condition of bilayer h-BN sheet. The theory results match well with the simulation results. These findings establish elementary understandings of the mechanical behavior and vibration character of bilayer h-BN nanosheets under five different stacking modes, which could benefit its application in advanced nanodevices.

5.
ACS Sens ; 8(8): 3068-3075, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37524053

RESUMO

Conductive two-dimensional metal-organic frameworks (2D MOFs) have attracted interest as they induce strong charge delocalization and improve charge carrier mobility and concentration. However, characterizing their stacking mode depends on expensive and time-consuming experimental measurements. Here, we construct a potential energy surface (PES) map database for 36 2D MOFs using density functional theory (DFT) for the experimentally synthesized and non-synthesized 2D MOFs to predict their stacking mode. The DFT PES results successfully predict the experimentally synthesized stacking mode with an accuracy of 92.9% and explain the coexistence mechanism of dual stacking modes in a single compound. Furthermore, we analyze the chemical (i.e., host-guest interaction) and electrical (i.e., electronic structure) property changes affected by stacking mode. The DFT results show that the host-guest interaction can be enhanced by the transition from AA to AB stacking, taking H2S gas as a case study. The electronic band structure calculation confirms that as AB stacking displacement increases, the in-plane charge transport pathway is reduced while the out-of-plane charge transport pathway is maintained or even increased. These results indicate that there is a trade-off between chemical and electrical properties in accordance with the stacking mode.


Assuntos
Estruturas Metalorgânicas , Condutividade Elétrica , Eletricidade , Eletrônica
6.
Molecules ; 27(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956915

RESUMO

Nitrogen-rich heterocyclic compounds are important heterocyclic substances with extensive future applications for energetic materials due to their outstanding density and excellent physicochemical properties. However, the weak intermolecular interactions of these compounds are not clear, which severely limits their widespread application. Three nitrogen-rich heterocyclic compounds were chosen to detect their molecular geometry, stacking mode and intermolecular interactions by crystal structure, Hirshfeld surface, RDG and ESP. The results show that all atoms in each molecule are coplanar and that the stacking mode of the three crystals is a planar layer style. A large amount of inter- and intramolecular interaction exists in the three crystals. All principal types of intermolecular contacts in the three crystals are N···H interactions and they account for 40.9%, 38.9% and 32.9%, respectively. Hydrogen bonding, vdW interactions and steric effects in Crystal c are stronger than in Crystals a and b. The negative ESPs all concentrate on the nitrogen atoms in the three molecules. This work is expected to benefit the crystal engineering of heterocyclic energetic materials.


Assuntos
Compostos Heterocíclicos , Compostos Heterocíclicos/química , Ligação de Hidrogênio , Nitrogênio
7.
Proc Natl Acad Sci U S A ; 117(18): 9832-9839, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32317383

RESUMO

G-quadruplex, assembled from a square array of guanine (G) molecules, is an important structure with crucial biological roles in vivo but also a versatile template for ordered functional materials. Although the understanding of G-quadruplex structures is the focus of numerous studies, little is known regarding the control of G-quartet stacking modes and the spontaneous orientation of G-quadruplex fibrils. Here, the effects of different metal ions and their concentrations on stacking modes of G-quartets are elucidated. Monovalent cations (typically K+) facilitate the formation of G-quadruplex hydrogels with both heteropolar and homopolar stacking modes, showing weak mechanical strength. In contrast, divalent metal ions (Ca2+, Sr2+, and Ba2+) at given concentrations can control G-quartet stacking modes and increase the mechanical rigidity of the resulting hydrogels through ionic bridge effects between divalent ions and borate. We show that for Ca2+ and Ba2+ at suitable concentrations, the assembly of G-quadruplexes results in the establishment of a mesoscopic chirality of the fibrils with a regular left-handed twist. Finally, we report the discovery of nematic tactoids self-assembled from G-quadruplex fibrils characterized by homeotropic fibril alignment with respect to the interface. We use the Frank-Oseen elastic energy and the Rapini-Papoular anisotropic surface energy to rationalize two different configurations of the tactoids. These results deepen our understanding of G-quadruplex structures and G-quadruplex fibrils, paving the way for their use in self-assembly and biomaterials.


Assuntos
DNA/química , Quadruplex G , Guanina/química , Hidrogéis/química , Anisotropia , Cátions Bivalentes/química , Cátions Monovalentes/química , DNA/ultraestrutura , Metabolismo Energético/efeitos dos fármacos , Líquidos Iônicos/química , Íons/química , Metais/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 12(19): 21709-21719, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320203

RESUMO

Interfacial energy storage contributes a new mechanism to the emergence of energy storage devices with not only a high-energy density of batteries but also a high-power density of capacitors. In this study, success was achieved in preparing a highly ordered two-dimensional (2D) carbon/TiO2 (C/TiO2) nanosheet composite using commercially available organic molecules with multifunctional groups and taking advantage of the wedge effects, oxidative polymerization, and carbonization. An experiment was conducted to validate the excellent performance of this 2D composite with respect to interfacial energy storage. The coin cell with 2D C/TiO2 nanosheet composite demonstrates a specific capacity of as high as 510 mAh g-1 and a high specific energy of 390.9 Wh kg-1 at a specific power of 75.9 W kg-1 with a current density of 0.1 A g-1, and it also remains 39.0 Wh kg-1 at a specific power of 8.2 kW kg-1 with a high current density of 12.8 A g-1. The excellent electrochemical performance can be attributed to the superior artificial interface capacitive Li+ storage capability, which would bridge the energy and power density gap between batteries and capacitors. Meanwhile, there are two varieties of carbon derivatives, 2D carbon nanosheet stacks and exfoliated carbon nanosheets, which can be obtained by wet-chemical etching and mechanical peeling. The experimental route is simple from commercially available raw materials, and it could be scalable at a low cost and large scale, which makes it suitable for application in various fields such as energy storage, nanocatalysis, sensors, and so on.

9.
ACS Appl Mater Interfaces ; 11(14): 13350-13358, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30883082

RESUMO

Luminescence switching materials are vital to various data security-related techniques, including data encryption-decryption. Here, we report a family of pseudopolymorphs based on a diimine-platinum(II) complex, Pt(Me3SiC≡CbpyC≡CSiMe3)(C≡CC6H4Br-3)2 (1), and systematically studied the influence of stacking modes on luminescence switching behaviors. Upon exposure to heat or tetrahydrofuran vapor, these pseudopolymorphs exhibit unusual stacking mode-intervened luminescence switching (SMILS) property that non-columnar and quasi-columnar pseudopolymorphs undergo single- and multi-step conversion processes, respectively, to the same non-columnar products. Systematic studies revealed that the unique SMILS behavior is caused by the existence of stable intermediate products as well as different conversion processes of pseudopolymorphs with distinct stacking modes. Such a new property leads to the self-encryption function of 1, which is very important for improving the existing data encryption-decryption technique. On this basis, we developed a facile, reusable, equipment-free technique with 1 as the only starting material and realized data encryption-decryption successfully.

10.
J Sep Sci ; 40(12): 2662-2670, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28436170

RESUMO

The current routes to couple dispersive liquid-liquid microextraction with capillary electrophoresis are the evaporation of water immiscible extractants and the back-extraction of analytes. In this study, a new methodology for this combination using water-in-oil microemulsion electrokinetic chromatography coupled with normal stacking mode on-line sample concentration was developed to analyze chlorophenols in water samples. The analytes were extracted with tributyl phosphate and the extractant dilution (3×) was directly injected into an electrophoresis buffer (7.7 cm) containing 5% sodium dodecyl sulfate, 78% 1-butanol, 2% 1-heptane, and 15% sodium acetate solution (pH 8.0). This proposed method is very simple and convenient compared to the conventional procedures. The key parameters affecting separation and concentration were systematically optimized. Under the optimized conditions, dispersive liquid-liquid microextraction contributed an enrichment factor of 45-50, and the overall sensitivity improvement was 312-418-fold. Limits of detection between 1.4 and 3.0 ng/mL and limits of quantification between 4.5 and 10.2 ng/mL were achieved. Acceptable repeatability lower than 3.0% for migration time and 9.0% for peak areas were obtained. The developed method was successfully applied for analysis of the chlorophenols in real water samples.

11.
Electrophoresis ; 35(5): 762-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24114803

RESUMO

This paper proposes a novel strategy to enhance detection of doxorubicin in human plasma, using homemade CE combined with normal stacking mode (NSM). The detection system of CE named as in-column tapered optic-fiber light-emitting diode induced fluorescence detection system is economic and more sensitive that has been demonstrated in our previous work. The influence of sample matrix, BGE, applied voltage, and injection time on the efficiency of NSM were systematically investigated. The clean extracts were subjected to CE separation with optimal experimental conditions: Ethanol-water (1:1, v/v) was used as sample matrix, pH 4.12 15 mM sodium phosphate buffer solution containing 70% v/v ACN, applied voltage 23 kV and 45 s hydrodynamic injection at a height of 20 cm. The detection system displayed linear dynamic range from 6.4 to 1.13 × 10(3) ng/mL with a correlation coefficient of 0.9990 and LOD 2.2 ng/mL for doxorubicin (DOX). The proposed CE method has been successfully applied to determine DOX in human plasma which the recoveries of standard DOX added to human plasma were found to been the range of 93.8-104.6%. The results obtained demonstrate that our detection system combined with NSM is a good idea to enhance sensitivity in CE for routine determination of DOX in some biological specimens.


Assuntos
Doxorrubicina/sangue , Eletroforese Capilar/métodos , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Soluções Tampão , Desenho de Equipamento , Etanol , Humanos , Fibras Ópticas , Reprodutibilidade dos Testes
12.
J Phys Chem Lett ; 5(16): 2781-4, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26278078

RESUMO

A proton-triggered hypsochromic luminescent chromophore 1,1'-(2,5-distyryl-1,4-phenylene) dipiperidine (DPD) was designed and synthesized. Upon treatment by hydrochloric acid (HCl), the emission of DPD showed a large hypsochromic shift in both THF solution and microcrystals. Theoretical calculations and powder X-ray diffraction experiments reveal that the switchable emission of DPD originated from the change of the distribution and the spatial arrangement of the frontier molecular orbitals, and the different stacking modes of DPD in microcrystals also contribute to the switchable emission of DPD in aggregates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA