Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39168807

RESUMO

BACKGROUND AND AIMS: Insulin resistance (IR) is a major risk factor for cardiovascular disease. Recently, a novel index (triglyceride-glucose index-TyG) has been proposed as a surrogate marker of IR and a better expression of IR than the Homeostatic Model Assessment of IR (HOMA-IR) index. Few and heterogeneous data are so far available on the relationship between vascular damage and this novel index. Therefore, we aimed to estimate the predictive role of TyG, in comparison with the HOMA-IR, on the development of arterial stiffening (AS), defined as a pulse pressure>60 mmHg, in an 8-year follow-up observation of a sample of non-diabetic adult men (the Olivetti Heart Study). METHODS AND RESULTS: The analysis included 527 non-diabetic men, with normal arterial elasticity at baseline and not on antihypertensive or hypolipidemic treatment. TyG was significantly greater in those who developed AS than those who did not (p = 0.006). On the contrary, the HOMA-IR index was not different between the two groups (p = 0.24). Similar trends were shown by logistic regression analysis adjusting for main confounders. After the stratification by the optimal cut-off point, values of TyG >4.70 were significantly associated with the development of AS, also after adjustment for main confounders. On the contrary, the HOMA-IR index >1.90 was not associated with the risk of AS development in multivariate models. CONCLUSION: The results of this study indicate a predictive role of TyG on AS, independently of the main potential confounders. Moreover, the predictive power of TyG seems to be greater than that of the HOMA-IR index.

2.
Comput Biol Med ; 180: 109019, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39153393

RESUMO

Recent clinical studies have reported that heart failure with preserved ejection fraction (HFpEF) can be divided into two phenotypes based on the range of ejection fraction (EF), namely HFpEF with higher EF and HFpEF with lower EF. These phenotypes exhibit distinct left ventricle (LV) remodelling patterns and dynamics. However, the influence of LV remodelling on various LV functional indices and the underlying mechanics for these two phenotypes are not well understood. To address these issues, this study employs a coupled finite element analysis (FEA) framework to analyse the impact of various ventricular remodelling patterns, specifically concentric remodelling (CR), concentric hypertrophy (CH), and eccentric hypertrophy (EH), with and without LV wall thickening on LV functional indices. Further, the geometries with a moderate level of remodelling from each pattern are subjected to fibre stiffening and contractile impairment to examine their effect in replicating the different features of HFpEF. The results show that with severe CR, LV could exhibit the characteristics of HFpEF with higher EF, as observed in recent clinical studies. Controlled fibre stiffening can simultaneously increase the end-diastolic pressure (EDP) and reduce the peak longitudinal strain (ell) without significant reduction in EF, facilitating the moderate CR geometries to fit into this phenotype. Similarly, fibre stiffening can assist the CH and 'EH with wall thickening' cases to replicate HFpEF with lower EF. These findings suggest that potential treatment for these two phenotypes should target the bio-origins of their distinct ventricular remodelling patterns and the extent of myocardial stiffening.


Assuntos
Insuficiência Cardíaca , Modelos Cardiovasculares , Remodelação Ventricular , Remodelação Ventricular/fisiologia , Humanos , Insuficiência Cardíaca/fisiopatologia , Fenótipo , Volume Sistólico/fisiologia , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Simulação por Computador
3.
Methods Mol Biol ; 2819: 477-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028520

RESUMO

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. Tethered particle motion (TPM) permits analysis of DNA conformation and detection of changes in conformation induced by such proteins at the single molecule level in vitro. As many individual protein-DNA complexes can be investigated in parallel, these experiments have high throughput. TPM is therefore well suited for characterization of the effects of protein-DNA stoichiometry and changes in physicochemical conditions (pH, osmolarity, and temperature). Here, we describe in detail how to perform tethered particle motion experiments on complexes between DNA and architectural proteins to determine their structural and biochemical characteristics.


Assuntos
Proteínas de Ligação a DNA , DNA , Conformação de Ácido Nucleico , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Ligação Proteica , Imagem Individual de Molécula/métodos , Movimento (Física)
4.
Front Netw Physiol ; 4: 1396593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050550

RESUMO

Lung diseases such as cancer substantially alter the mechanical properties of the organ with direct impact on the development, progression, diagnosis, and treatment response of diseases. Despite significant interest in the lung's material properties, measuring the stiffness of intact lungs at sub-alveolar resolution has not been possible. Recently, we developed the crystal ribcage to image functioning lungs at optical resolution while controlling physiological parameters such as air pressure. Here, we introduce a data-driven, multiscale network model that takes images of the lung at different distending pressures, acquired via the crystal ribcage, and produces corresponding absolute stiffness maps. Following validation, we report absolute stiffness maps of the functioning lung at microscale resolution in health and disease. For representative images of a healthy lung and a lung with primary cancer, we find that while the lung exhibits significant stiffness heterogeneity at the microscale, primary tumors introduce even greater heterogeneity into the lung's microenvironment. Additionally, we observe that while the healthy alveoli exhibit strain-stiffening of ∼1.75 times, the tumor's stiffness increases by a factor of six across the range of measured transpulmonary pressures. While the tumor stiffness is 1.4 times the lung stiffness at a transpulmonary pressure of three cmH2O, the tumor's mean stiffness is nearly five times greater than that of the surrounding tissue at a transpulmonary pressure of 18 cmH2O. Finally, we report that the variance in both strain and stiffness increases with transpulmonary pressure in both the healthy and cancerous lungs. Our new method allows quantitative assessment of disease-induced stiffness changes in the alveoli with implications for mechanotransduction.

5.
Adv Mater ; 36(35): e2405776, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966888

RESUMO

Bionic artificial skin which imitates the features and functions of human skin, has broad applications in wearable human-machine interfaces. However, equipping artificial materials with skin-like mechanical properties, self-healing ability, and high sensitivity remains challenging. Here, inspired by the structure of human skin, an artificial skin based on ionogel composites with tailored mechanical properties and robust interface is prepared. Combining finite element analysis and direct ink writing (DIW) 3D printing technology, an ionogel composite with a rigid skeleton and an ionogel matrix is precisely designed and fabricated, realizing the mechanical anisotropy and nonlinear mechanical response that accurately mimic human skin. Robust interface is created through co-curing of the skeleton and matrix resins, significantly enhancing the stability of the composite. The realization of self-healing ability and resistance to crack growth further ensure the remarkable durability of the artificial skin for sensing application. In summary, the bionic artificial skin mimics the characteristics of human skin, including mechanical anisotropy, nonlinear mechanical response, self-healing capability, durability and high sensitivity when applied as flexible sensors. These strategies provide strong support for the fabrication of tissue-like materials with adaptive mechanical behaviors.


Assuntos
Géis , Pele Artificial , Humanos , Géis/química , Impressão Tridimensional , Materiais Biomiméticos/química , Biônica , Fenômenos Mecânicos , Análise de Elementos Finitos , Dispositivos Eletrônicos Vestíveis , Anisotropia
6.
Am J Physiol Cell Physiol ; 327(3): C698-C715, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946422

RESUMO

Type 2 diabetes (T2D) constitutes a major public health problem, and despite prevention efforts, this pandemic disease is one of the deadliest diseases in the world. In 2022, 6.7 million patients with T2D died prematurely from vascular complications. Indeed, diabetes increases the risk of myocardial infarction or stroke eightfold. The identification of the molecular factors involved in the occurrence of cardiovascular complications and their prevention are therefore major axes. Our hypothesis is that factors brought into play during physiological aging appear prematurely with diabetes progression. Our study focused on the aging of the extracellular matrix (ECM), a major element in the maintenance of vascular homeostasis. We characterized the morphological and functional aspects of aorta, with a focus on the collagen and elastic fibers of diabetic mice aged from 6 mo to nondiabetic mice aged 6 mo and 20 mo. The comparison with the two nondiabetic models (young and old) highlighted an exacerbated activity of proteases, which could explain a disturbance in the collagen accumulation and an excessive degradation of elastic fibers. Moreover, the generation of circulating elastin-derived peptides reflects premature aging of the ECM. These extracellular elements contribute to the appearance of vascular rigidity, often the origin of pathologies such as hypertension and atherosclerosis. In conclusion, we show that diabetic mice aged 6 mo present the same characteristics of ECM wear as those observed in mice aged 20 mo. This accelerated aortic wall remodeling could then explain the early onset of cardiovascular diseases and, therefore, the premature death of patients with T2D.NEW & NOTEWORTHY Aortic elastic fibers of young (6-mo old) individuals with diabetes degrade prematurely and exhibit an appearance like that found in aged (20-mo old) nondiabetic mice. Exacerbated elastolysis and elastin-derived peptide production are characteristic elements, contributing to early aortic wall rigidity and hypertension development. Therefore, limiting this early aging could be a judicious therapeutic approach to reduce cardiovascular complications and premature death in patients with diabetes.


Assuntos
Aorta , Tecido Elástico , Matriz Extracelular , Síndrome Metabólica , Camundongos Endogâmicos C57BL , Rigidez Vascular , Animais , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Rigidez Vascular/fisiologia , Camundongos , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/fisiopatologia , Elastina/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Envelhecimento/patologia , Envelhecimento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Senilidade Prematura/metabolismo , Senilidade Prematura/patologia , Senilidade Prematura/fisiopatologia
7.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063044

RESUMO

Endothelial dysfunction is cause and consequence of cardiovascular diseases. The endothelial hormone C-type natriuretic peptide (CNP) regulates vascular tone and the vascular barrier. Its cGMP-synthesizing guanylyl cyclase-B (GC-B) receptor is expressed in endothelial cells themselves. To characterize the role of endothelial CNP/cGMP signaling, we studied mice with endothelial-selective GC-B deletion. Endothelial EC GC-B KO mice had thicker, stiffer aortae and isolated systolic hypertension. This was associated with increased proinflammatory E-selectin and VCAM-1 expression and impaired nitric oxide bioavailability. Atherosclerosis susceptibility was evaluated in such KO and control littermates on Ldlr (low-density lipoprotein receptor)-deficient background fed a Western diet for 10 weeks. Notably, the plaque areas and heights within the aortic roots were markedly increased in the double EC GC-B/Ldlr KO mice. This was accompanied by enhanced macrophage infiltration and greater necrotic cores, indicating unstable plaques. Finally, we found that EC GC-B KO mice had diminished vascular regeneration after critical hind-limb ischemia. Remarkably, all these genotype-dependent changes were only observed in female and not in male mice. Auto/paracrine endothelial CNP/GC-B/cGMP signaling protects from arterial stiffness, systolic hypertension, and atherosclerosis and improves reparative angiogenesis. Interestingly, our data indicate a sex disparity in the connection of diminished CNP/GC-B activity to endothelial dysfunction.


Assuntos
GMP Cíclico , Camundongos Knockout , Peptídeo Natriurético Tipo C , Transdução de Sinais , Animais , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/genética , GMP Cíclico/metabolismo , Camundongos , Masculino , Feminino , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Receptores do Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/genética , Células Endoteliais/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Comunicação Parácrina , Hipertensão/metabolismo , Hipertensão/genética , Camundongos Endogâmicos C57BL , Aorta/metabolismo , Aorta/patologia
8.
ACS Appl Mater Interfaces ; 16(29): 38511-38519, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980155

RESUMO

Metamaterials show elaborate mechanical behavior such as strain stiffening, which stems from their unit cell design. However, the stiffening response is typically programmed in the design step and cannot be adapted postmanufacturing. Here, we show hydrogel metamaterials with highly programmable strain-stiffening responses by exploiting the out-of-plane buckling of integrated pH-switchable hydrogel actuators. The stiffening upon reaching a certain extension stems from the initially buckled active hydrogel beams. At low strain, the beams do not contribute to the mechanical response under tension until they straighten with a resulting step-function increase in stiffness. In the hydrogel actuator design, the acrylic acid concentration hard-codes the configuration of the metamaterial and range of possible stiffening onsets, while the pH soft-codes the exact stiffening onset point after fabrication. The utilization of out-of-plane buckling to realize subsequent stiffening without the need to deform the passive structure extends the application of hydrogel actuators in mechanical metamaterials. Our concept of out-of-plane buckled active elements that stiffen only under tension enables strain-stiffening metamaterials with high programmability before and after fabrication.

9.
Biol Sex Differ ; 15(1): 46, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845040

RESUMO

BACKGROUND: Sex hormones and sex chromosomes play a vital role in cardiovascular disease. Testosterone plays a crucial role in men's health. Lower testosterone level is associated with cardiovascular and cardiometabolic diseases, including inflammation, atherosclerosis, and type 2 diabetes. Testosterone replacement is beneficial or neutral to men's cardiovascular health. Testosterone deficiency is associated with cardiovascular events. Testosterone supplementation to hypogonadal men improves libido, increases muscle strength, and enhances mood. We hypothesized that sex chromosomes (XX and XY) interaction with testosterone plays a role in arterial stiffening. METHODS: We used four core genotype male mice to understand the inherent contribution of sex hormones and sex chromosome complement in arterial stiffening. Age-matched mice were either gonadal intact or castrated at eight weeks plus an additional eight weeks to clear endogenous sex hormones. This was followed by assessing blood pressure, pulse wave velocity, echocardiography, and ex vivo passive vascular mechanics. RESULTS: Arterial stiffening but not blood pressure was more significant in castrated than testes-intact mice independent of sex chromosome complement. Castrated mice showed a leftward shift in stress-strain curves and carotid wall thinning. Sex chromosome complement (XX) in the absence of testosterone increased collagen deposition in the aorta and Kdm6a gene expression. CONCLUSION: Testosterone deprivation increases arterial stiffening and vascular wall remodeling. Castration increases Col1α1 in male mice with XX sex chromosome complement. Our study shows decreased aortic contractile genes in castrated mice with XX than XY sex chromosomes.


Cardiovascular disease is the leading cause of death worldwide. Cardiovascular disease presents differently in men and women. While men develop plaque buildup in large arteries, women develop buildup in the microvessels in the heart. Arterial stiffening, which is the hardening of arteries, increases with age in both men and women. Aging, coupled with the decline in sex hormones, exacerbates cardiovascular disease in women compared to men. Men with XY sex chromosomes have higher circulating testosterone, while women with XX sex chromosomes have increased circulating estradiol. The potential benefits of sex hormone replacement therapy are shown in men and women. Indeed, testosterone replacement deficiency is associated with adverse cardiovascular outcomes in men. Whether adverse events are dependent or independent of sex hormones' interaction with sex chromosomes is unknown. This study used the four core genotype mice comprising males with either XX or XY sex chromosome complement. We show castration increases arterial stiffening and collagen deposition on the arterial wall. We also identified the escapee and smooth muscle contractile genes that may play a role in arterial stiffening. Our data suggests that testosterone deprivation mediates arterial stiffening and remodeling.


Assuntos
Cromossomos Sexuais , Testosterona , Rigidez Vascular , Animais , Masculino , Testosterona/sangue , Testosterona/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Pressão Sanguínea , Orquiectomia
10.
Adv Sci (Weinh) ; 11(32): e2402632, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923328

RESUMO

Ultralong room-temperature phosphorescent (URTP) materials have attracted wide attention in anti-counterfeiting, optoelectronic display, and bio-imaging due to their special optical properties. However, room-temperature blue phosphorescent materials are very scarce during applications because of the need to simultaneously populate and stabilize high-energy excited states. In this work, a stepwise stiffening chromophore strategy is proposed to suppress non-radiative jump by continuously reducing the internal spin of the chromophore, and successfully developing a series of blue phosphorescent materials. Phosphorescence lifetimes of more than 3 s are achieved, with the longest lifetime reaching 5.44 s and lasting more than 70 s in the naked eye. As far as is know, this is the best result that has been reported. By adjusting the chromophore conjugation, multicolor phosphorescences from cyan to green have been realized. In addition, these chromophores exhibit the same excellent optical properties in urea and polyvinyl alcohmance (PVA). Finally, these materials are successfully applied to luminescent displays.

11.
Hellenic J Cardiol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925251

RESUMO

OBJECTIVE: Neurohumoral alterations in heart failure (HF) affect blood pressure variability (BPV) and vascular compliance, but little is known about this subject among patients admitted to the hospital with decompensated HF. This study sought to investigate in-hospital 24-h blood pressure monitoring (BPM)-derived BPV parameters and vascular compliance in patients with decompensated HF and explore the association of these parameters with hospitalization length and in-hospital adverse events. METHODS: A 24-h BPM was applied during the first 6 h of admission to the hospital in patients with decompensated HF. Circadian patterns were determined by the study patients. Average real variability (ARV), pulse pressure index (PPI), pulse stiffening ratio (PSR), and ambulatory arterial stiffness index (AASI) values were calculated from in hospital 24-h BPM recordings. Admission and discharge N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, length of hospitalization, and in-hospital adverse events were recorded. RESULTS: A total of 167 patients with decompensated HF were included in the study. The dipper group exhibited a greater NT-proBNP decrease with the treatment than the non-dipper group and reverse dipper group. Hospitalization length was shorter in the dipper group than in the non-dipper and reverse dipper groups. Although ARV, AASI, and PSR were independently associated with the length of hospitalization, ARV, AASI, and PPI were independently associated with in-hospital adverse events. CONCLUSION: The post-admission in hospital 24-h BPM-derived parameters (dipper pattern, ARV, PPI, PSR, and AASI) of patients admitted to hospital with decompensated HF provide important prognostic information and predict the length of hospital stay.

12.
Eur Heart J Open ; 4(3): oeae040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38863521

RESUMO

Aims: The ageing process notably induces structural changes in the arterial system, primarily manifesting as increased aortic stiffness, a precursor to cardiovascular events. While wave separation analysis is a robust tool for decomposing the components of blood pressure waveform, its relationship with cardiovascular events, such as aortic stiffening, is incompletely understood. Furthermore, its applicability has been limited due to the need for concurrent measurements of pressure and flow. Our aim in this study addresses this gap by introducing a spectral regression learning method for pressure-only wave separation analysis. Methods and results: Leveraging data from the Framingham Heart Study (2640 individuals, 55% women), we evaluate the accuracy of pressure-only estimates, their interchangeability with a reference method based on ultrasound-derived flow waves, and their association with carotid-femoral pulse wave velocity (PWV). Method-derived estimates are strongly correlated with the reference ones for forward wave amplitude ( R 2 = 0.91 ), backward wave amplitude ( R 2 = 0.88 ), and reflection index ( R 2 = 0.87 ) and moderately correlated with a time delay between forward and backward waves ( R 2 = 0.38 ). The proposed pressure-only method shows interchangeability with the reference method through covariate analysis. Adjusting for age, sex, body size, mean blood pressure, and heart rate, the results suggest that both pressure-only and pressure-flow evaluations of wave separation parameters yield similar model performances for predicting carotid-femoral PWV, with forward wave amplitude being the only significant factor (P < 0.001; 95% confidence interval, 0.056-0.097). Conclusion: We propose an interchangeable pressure-only wave separation analysis method and demonstrate its clinical applicability in capturing aortic stiffening. The proposed method provides a valuable non-invasive tool for assessing cardiovascular health.

13.
Adv Sci (Weinh) ; : e2403379, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940419

RESUMO

Traditional anti-impact armors and shields are normally made of stiff and hard materials and therefore deficient in flexibility. This greatly limits their applications in protecting objects with complex geometries or significant deformability. Flexible armors can be developed with the application of hard platelets and soft materials, but the lower rigidity of the flexible armors renders them incapable of providing sufficient resistance against impact attacks. To address the inherent conflict between flexibility and impact resistance in traditional armors, here, a composite is developed by hybridizing a shear-stiffening gel as the matrix and chemically-strengthened ultrathin glass sheets (CSGS) as the reinforcement. The resulting laminate, termed PCCL, exhibits both high flexibility and high impact resistance. Specifically, at low strain rates, the high ductility of the gel combined with the high flexural strength of the CSGS enables the PCCL to undergo considerable deformation; at high strain rates, on the other hand, the shear stiffening behavior of the gel matrix endows the PCCL with excellent impact resistance manifested by its high performance in energy absorption and high rigidity. With the combination of high flexibility and high impact resistance, the PCCL is demonstrated to be an ideal armor for protecting curved vulnerable objects from impact attacks.

14.
Physiol Rep ; 12(12): e16090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884325

RESUMO

Adverse effects of large artery stiffening are well established in the systemic circulation; stiffening of the proximal pulmonary artery (PPA) and its sequelae are poorly understood. We combined in vivo (n = 6) with ex vivo data from cadavers (n = 8) and organ donors (n = 13), ages 18 to 89, to assess whether aging of the PPA associates with changes in distensibility, biaxial wall strain, wall thickness, vessel diameter, and wall composition. Aging exhibited significant negative associations with distensibility and cyclic biaxial strain of the PPA (p ≤ 0.05), with decreasing circumferential and axial strains of 20% and 7%, respectively, for every 10 years after 50. Distensibility associated directly with diffusion capacity of the lung (R2 = 0.71, p = 0.03). Axial strain associated with right ventricular ejection fraction (R2 = 0.76, p = 0.02). Aging positively associated with length of the PPA (p = 0.004) and increased luminal caliber (p = 0.05) but showed no significant association with mean wall thickness (1.19 mm, p = 0.61) and no significant differences in the proportions of mural elastin and collagen (p = 0.19) between younger (<50 years) and older (>50) ex vivo samples. We conclude that age-related stiffening of the PPA differs from that of the aorta; microstructural remodeling, rather than changes in overall geometry, may explain age-related stiffening.


Assuntos
Envelhecimento , Artéria Pulmonar , Rigidez Vascular , Humanos , Artéria Pulmonar/fisiologia , Idoso , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Envelhecimento/fisiologia , Idoso de 80 Anos ou mais , Adolescente , Rigidez Vascular/fisiologia , Adulto Jovem , Elastina/metabolismo
15.
Materials (Basel) ; 17(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673088

RESUMO

The aluminum strength-to-weight ratio has become a highly significant factor in industrial applications. Placing stiffening ribs along the surface can significantly improve the panel's resistance to bending and compression in aluminum alloys. This study used single-point incremental forming (SPIF) to fabricate stiffening ribs for 1 mm and 3 mm thick aluminum alloy EN AW-2024-T3 sheets. A universal compression machine was used to investigate sheet deformation. The resulting deformation was examined using non-contact digital image correlation (DIC) based on several high-resolution cameras. The results showed that deformation progressively escalated from the edges toward the center, and the highest buckling values were confined within the non-strengthened area. Specimens with a larger thickness (3 mm) showed better effectiveness against buckling and bending for each applied load: 8 kN or 10 kN. Additionally, the displacement from the sheet surface decreased by 60% for sheets 3 mm thick and by half for sheets 1 mm thick, which indicated that thicker sheets could resist deformation better.

16.
Adv Mater ; 36(28): e2403198, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655776

RESUMO

The nonlinear elasticity of many tissue-specific extracellular matrices is difficult to recapitulate without the use of fibrous architectures, which couple strain-stiffening with stress relaxation. Herein, bottlebrush polymers are synthesized and crosslinked to form poly(ethylene glycol)-based hydrogels and used to study how strain-stiffening behavior affects human mesenchymal stromal cells (hMSCs). By tailoring the bottlebrush polymer length, the critical stress associated with the onset of network stiffening is systematically varied, and a unique protrusion-rich hMSC morphology emerges only at critical stresses within a biologically accessible stress regime. Local cell-matrix interactions are quantified using 3D traction force microscopy and small molecule inhibitors are used to identify cellular machinery that plays a critical role in hMSC mechanosensing of the engineered, strain-stiffening microenvironment. Collectively, this study demonstrates how covalently crosslinked bottlebrush polymer hydrogels can recapitulate strain-stiffening biomechanical cues at biologically relevant stresses and be used to probe how nonlinear elastic matrix properties regulate cellular processes.


Assuntos
Actomiosina , Elasticidade , Hidrogéis , Células-Tronco Mesenquimais , Polietilenoglicóis , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Actomiosina/metabolismo , Polietilenoglicóis/química , Polímeros/química , Polímeros/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/química
17.
Sci Rep ; 14(1): 6444, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499649

RESUMO

Diammonium phosphate (DAP) has been proven effective in improving the stiffness of weak or acid-damaged carbonates, thereby preserving hydraulic fracture conductivity. The reaction between DAP and calcite in chalk formations primarily produces hydroxyapatite (HAP), which is stiffer than calcite. However, the optimal reaction outcomes vary greatly with factors such as DAP concentration and reaction conditions. This study investigated the DAP-calcite reaction duration, pressure, and temperature effects on the stiffness magnitude of soft Austin chalk. Also, the catalyst effect and depth of HAP formation were examined. The study involved the assessment of stiffness non-destructively (impulse hammering), mineralogy (XRD, SEM), and elemental composition (XRF). The study tested 15 different DAP-chalk reaction variations, where the pressure, temperature, aging time and catalyst addition were modified in each case. The samples' elastic stiffness distributions were then collected and compared to the pre-reaction ones. The results showed that the elastic stiffness increased in all treated samples, with an 181% maximum increase achieved after 72 h at 6.9 MPa and 75 °C. However, the pressure effect was minor compared to the temperature. The SEM images revealed different HAP morphology corresponding to different treatment conditions. Although the treated samples showed an increased intensity of phosphorus throughout the entire sample, the near-surface zone (4-6 mm) was the most affected, as inferred from the XRF elemental analysis. The study's findings can help optimize hydraulic fracturing operations in weak carbonate reservoirs, improving production rates and overall well performance.

19.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R346-R356, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406844

RESUMO

The aim of this study was to investigate how aging affects blood flow and structure of the brain. It was hypothesized older individuals would have lower gray matter volume (GMV), resting cerebral blood flow (CBF0), and depressed responses to isometabolic and neurometabolic stimuli. In addition, increased carotid-femoral pulse-wave velocity (PWV), carotid intima-media thickness (IMT), and decreased brachial flow-mediated dilation (FMD) would be associated with lower CBF0, cerebrovascular reactivity (CVR), and GMV. Brain scans (magnetic resonance imaging) and cardiovascular examinations were conducted in young (age = 24 ± 3 yr, range = 22-28 yr; n = 13) and old (age = 71 ± 4 yr; range = 67-82 yr, n = 14) participants, and CBF0, CVR [isometabolic % blood oxygen level-dependent (BOLD) in response to a breath hold (BH)], brain activation patterns during a working memory task (neurometabolic %BOLD response to N-back trial), GMV, PWV, IMT, and FMD were measured. CBF0 and to a lesser extent CVRBH were lower in the old group (P ≤ 0.050); however, the increase in the %BOLD response to the memory task was not blunted (P ≥ 0.2867). Age-related differential activation patterns during the working memory task were characterized by disinhibition of the default mode network in the old group (P < 0.0001). Linear regression analyses revealed PWV, and IMT were negatively correlated with CBF0, CVRBH, and GMV across age groups, but within the old group alone only the relationships between PWV-CVRBH and IMT-GMV remained significant (P ≤ 0.0183). These findings suggest the impacts of age on cerebral %BOLD responses are stimulus specific, brain aging involves alterations in cerebrovascular and possibly neurocognitive control, and arterial stiffening and wall thickening may serve a role in cerebrovascular aging.NEW & NOTEWORTHY Cerebral perfusion was lower in old versus young adults. %Blood oxygen level-dependent (BOLD) responses to an isometabolic stimulus and gray matter volume were decreased in old versus young adults and associated with arterial stiffening and wall thickening. The increased %BOLD response to a neurometabolic stimulus appeared unaffected by age; however, the old group displayed disinhibition of the default mode network during the stimulus. Thus, age-related alterations in cerebral %BOLD responses were stimulus specific and related to arterial remodeling.


Assuntos
Espessura Intima-Media Carotídea , Imageamento por Ressonância Magnética , Adulto Jovem , Humanos , Adulto , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Envelhecimento , Circulação Cerebrovascular/fisiologia , Atrofia
20.
Data Brief ; 53: 110193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419770

RESUMO

The paper reports a series of experimental and numerical data of destructive stub column tests on additively manufactured steel parts stiffened by surface sinusoidal wave patterns. The specimens were made in 316L stainless steel and manufactured by selective laser melting (SLM). The experimental tests covered five tensile coupon tests, fourteen square hollow section (SHS) stub column tests and measurements of geometric imperfections of the stub columns. Numerical models incorporating the measured material and geometric properties were developed and analysed via GMNIA approach. The validity of the numerical models is demonstrated by their accurate replications of the load-end shortening responses of the tested specimens. The reported dataset will contribute to the stability design and characterisation of thin-walled steel plated structures with advanced stiffening patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA