Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38785660

RESUMO

Quantum states containing records of incompatible outcomes of quantum measurements are valid states in the tensor-product Hilbert space. Since they contain false records, they conflict with the Born rule and with our observations. I show that excluding them requires a fine-tuning to an extremely restricted subspace of the Hilbert space that seems "conspiratorial", in the sense that (1) it seems to depend on future events that involve records (including measurement settings) and on the dynamical law (normally thought to be independent of the initial conditions), and (2) it violates Statistical Independence, even when it is valid in the context of Bell's theorem. To solve the puzzle, I build a model in which, by changing the dynamical law, the same initial conditions can lead to different histories in which the validity of records is relative to the new dynamical law. This relative validity of the records may restore causality, but the initial conditions still must depend, at least partially, on the dynamical law. While violations of Statistical Independence are often seen as non-scientific, they turn out to be needed to ensure the validity of records and our own memories and, by this, of science itself. A Past Hypothesis is needed to ensure the existence of records and turns out to require violations of Statistical Independence. It is not excluded that its explanation, still unknown, ensures such violations in the way needed by local interpretations of quantum mechanics. I suggest that an as-yet unknown law or superselection rule may restrict the full tensor-product Hilbert space to the very special subspace required by the validity of records and the Past Hypothesis.

2.
Entropy (Basel) ; 25(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36832647

RESUMO

A violation of Bell-CHSH inequalities does not justify speculations about quantum non-locality, conspiracy and retro-causation. Such speculations are rooted in a belief that setting dependence of hidden variables in a probabilistic model (called a violation of measurement independence (MI)) would mean a violation of experimenters' freedom of choice. This belief is unfounded because it is based on a questionable use of Bayes Theorem and on incorrect causal interpretation of conditional probabilities. In Bell-local realistic model, hidden variables describe only photonic beams created by a source, thus they cannot depend on randomly chosen experimental settings. However, if hidden variables describing measuring instruments are correctly incorporated into a contextual probabilistic model a violation of inequalities and an apparent violation of no-signaling reported in Bell tests can be explained without evoking quantum non-locality. Therefore, for us, a violation of Bell-CHSH inequalities proves only that hidden variables have to depend on settings confirming contextual character of quantum observables and an active role played by measuring instruments. Bell thought that he had to choose between non-locality and the violation of experimenters' freedom of choice. From two bad choices he chose non-locality. Today he would probably choose the violation of MI understood as contextuality.

3.
Entropy (Basel) ; 23(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671774

RESUMO

This is a dialogue between Huw Price and Travis Norsen, loosely inspired by a letter that Price received from J. S. Bell in 1988. The main topic of discussion is Bell's views about retrocausal approaches to quantum theory and their relevance to contemporary issues.

4.
Entropy (Basel) ; 20(4)2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33265385

RESUMO

One of the basic assumptions underlying Bell's theorem is the causal arrow of time, having to do with temporal order rather than spatial separation. Nonetheless, the physical assumptions regarding causality are seldom studied in this context, and often even go unmentioned, in stark contrast with the many different possible locality conditions which have been studied and elaborated upon. In the present work, some retrocausal toy-models which reproduce the predictions of quantum mechanics for Bell-type correlations are reviewed. It is pointed out that a certain toy-model which is ostensibly superdeterministic-based on denying the free-variable status of some of quantum mechanics' input parameters-actually contains within it a complete retrocausal toy-model. Occam's razor thus indicates that the superdeterministic point of view is superfluous. A challenge is to generalize the retrocausal toy-models to a full theory-a reformulation of quantum mechanics-in which the standard causal arrow of time would be replaced by a more lenient one: an arrow of time applicable only to macroscopically-available information. In discussing such a reformulation, one finds that many of the perplexing features of quantum mechanics could arise naturally, especially in the context of stochastic theories.

5.
Philos Trans A Math Phys Eng Sci ; 373(2047)2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26124246

RESUMO

Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...