Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(27): 35697-35715, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934253

RESUMO

The greater geometrical design freedom offered by additive manufacturing (AM) as compared to the conventional manufacturing method has attracted increasing interest in AM to develop innovative and complex designs for enhanced performance. However, the difference in material composition and surface properties from conventional alloys has made surface micro-/nanostructuring of AM metals challenging. Frost accretion is a safety hazard in numerous engineering applications. To expand the application of AM, this study experimentally investigates the antifrosting performance of superhydrophobic and slippery lubricant-infused porous surfaces (SLIPSs) generated on AM alloy, AlSi10Mg. By strategically utilizing the subgrain structure in the metallography of the AM alloy, the functionalized superhydrophobic AM surface featuring hierarchical structures was shown to greatly reduce frost formation as compared to functionalized single-tier structured surfaces, hierarchical structures formed on conventional aluminum alloy surfaces, and SLIPSs. Optical observation of frost propagation demonstrated that the mechanism of frost delay is governed by the inhibition of spontaneous droplet freezing through exceptional Cassie state stability during condensation frosting. The Cassie stability results from the unique AM structure morphology, which creates a higher structural energy barrier to prevent condensate from infiltrating the cavities. This phenomenon also enables the formation of a high surface-to-droplet thermal resistance, which eliminates spontaneous droplet freezing down to a -15 °C surface temperature. Our work demonstrates a scalable structuring method for AM metals, which can result in delayed frost formation, and it also provides guidelines for the development of engineered surfaces requiring the antifrosting function for several industries.

2.
Materials (Basel) ; 17(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793320

RESUMO

This work presents results on laser-induced surface structuring of AlN ceramic and its application in Surface-Enhanced Raman Spectroscopy (SERS). The laser processing is performed by nanosecond pulses in air and vacuum. Depending on the processing conditions, different surface morphology can be obtained. The ablation process is realized by ceramic decomposition as the formation of an aluminium layer is detected. The efficiency of the fabricated structures as active substrates in SERS is estimated by the ability of the detection of ammonium nitrate (NH4NO3). It is conducted for Raman spectrometer systems that operate at wavelengths of 514 and 785 nm where the most common commercial systems work. The obtained structures contribute to enhancement of the Raman signal at both wavelengths, as the efficiency is higher for excitation at 514 nm. The limit of detection (LOD) of ammonium nitrate is estimated to be below the maximum allowed value in drinking water. The analysis of the obtained results was based on the calculations of the near field enhancement at different conditions based on Finite Difference Time Domain simulation and the extinction spectra calculations based on Generalized Mie scattering theory. The structures considered in these simulations were taken from the SEM images of the real samples. The oxidation issue of the ablated surface was studied by X-ray photoelectron spectroscopy. The presented results indicated that laser structuring of AlN ceramics is a way for fabrication of Al structures with specific near-field properties that can be used for the detection of substances with high social impact.

3.
Materials (Basel) ; 16(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984064

RESUMO

We investigate the evolution mechanisms of the laser-induced periodic surface structures (LIPSS) and quasi-periodic grooves that are formed on the surface of monocrystalline silicon (mono-Si) when exposed to femtosecond laser radiation of different pulse duration, state of polarization, and fluence. The conditions required for producing LIPSS-free complex micro-ridge patterns are elaborated. The LIPSS evolution mechanism is explained in terms of scattering/interference-based phenomena. To establish the basis for our interpretation, single femtosecond pulses of different pulse durations are irradiated on mono-Si. The absence/appearance of LIPSS rudiments is explained in the context of spectral bandwidth and the associated effects on the intensity of the central wavelength. Shorter fs pulses of a wider bandwidth are employed to induce LIPSS-free micro-ridge patterns. It is demonstrated that the resultant micro-ridge patterns depend on the laser fluence distribution and can be manipulated through laser polarization. The curved morphology of LIPSS rudiments and the evolution mechanism of low- and high-spatial frequency LIPSS, i.e., LSFL and HSFL, are discussed. Finally, it is demonstrated that the consolidated quasi-periodic grooves result from HSFL welding together groups of LSFL. Although our findings are based on fs laser interaction with mono-Si, the results can also be applied to many other materials.

4.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985900

RESUMO

The use of a cylindrical lens in femtosecond laser surface structuring is receiving attention to improve the processing efficiency. Here, we investigate the structures produced on a copper target, in air, by exploiting both spherical and cylindrical lenses for beam focusing, aiming at elucidating similarities and differences of the two approaches. The morphological features of the surface structures generated by ≈180 fs laser pulses at 1030 nm over areas of 8 × 8 mm2 were analyzed. For the spherical lens, micron-sized parallel channels are formed on the target surface, which is covered by subwavelength ripples and nanoparticles. Instead, the cylindrical lens leads to a surface decorated with ripples and nanoparticles with a negligible presence of micro-channels. Moreover, the morphological features achieved by focusing ≈180 fs laser pulses at 515 nm with the cylindrical lens and varying the scanning parameters were also studied. The experimental results evidence a direct effect of the hatch distance used in the scanning process on the target surface that contains dark and bright bands corresponding to regions where the rippled surface contains a richer decoration or a negligible redeposition of nanoparticles. Our findings can be of interest in large area surface structuring for the selection of the more appropriate focusing configuration according to the final application of the structured surface.

5.
Nanotechnology ; 34(24)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827699

RESUMO

Graphene oxide (GO) and reduced graphene oxide have outstanding qualities that could be exploited as reinforcement and antibacterial agents in a plethora of biomedical applications. In this contribution, it is reported the deployment of a polyacrylamide GO-hydrogel composite (GO@pAAm) which was photo-converted and structured by ultra-short laser irradiation using a direct laser writing (DLW) approach. The materials were characterized by Fourier Transform Infrared spectroscopy, scanning electron microscopy and confocal microscopy. The laser structure generates a multi-photo-induced effect: surface foaming and patterning, microdomains with enhanced selective water-swelling and effective GO photo-reduction. A first laser scan seems likely to induce the photo-reduction of GO and subsequent laser pulses trigger the structure/foaming. The photo-reduction of GO is evidenced by Raman spectroscopy by the relatively changing intensities of the D to G signals. Macroscopically by an increase in conductivity (decrease in sheet resistance fromRS-GO@pAAm= 304 ± 20 kΩ sq-1toRS-rGO@pAAm-DLW= 27 ± 8 kΩ sq-1) suggesting a reduction of the material measured by 4-Point-Probe.

6.
Materials (Basel) ; 16(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676423

RESUMO

Laser structuring is by far the most investigated metal surface-pretreatment method for creating adhesion in polymer-metal hybrids. Especially, cone-like protrusions show excellent wetting behaviour as well as high compound strength. However, the processing time is extremely high. Therefore, this paper assesses a process strategy for creating pin structures with scalable height by single pulse drilling with an Nd/YVO4 nanosecond laser system on EN AW-6082 aluminium alloy. The strength testing is carried out by butt-bonded hollow cylinder torsion. The samples are manufactured by heat-conduction thermal joining with polyamide 6. Ten different surface structures with two different ablation diameters are investigated and compared to cone-like protrusions in terms of processing time, wetting behaviour, shear strength and fracture behaviour. The experimental results show that pulse drilling pins structures with high aspect ratio reach-strength values close to cone-like protrusions but with 31 times higher processing rate.

7.
ACS Appl Mater Interfaces ; 14(21): 24133-24143, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594573

RESUMO

Platelets are cell fragments from megakaryocytes devoid of the cell nucleus. They are highly sensitive and easily activated by nonphysiological surfaces. Activated platelets have an intrinsic mechanism to release various proteins that participate in multiple pathways, initiating the platelet activation cascade. Surface-induced platelet activation is a challenge encountered during platelet storage, which eventually leads to aggregation of platelets and can thereby result in the degradation of the platelet concentrates. We have previously reported that surface-induced platelet activation can be minimized by either modifying their contact surfaces with polymers or introducing nanogroove patterns underneath the platelets. Here, we investigated the response of platelets to various nanotopographical surfaces printed using fluidic force microscopy (FluidFM). We found that the hemispherical array (grid) and hexagonal tile (hive) structures caused a reduction of surface stiffness, which leads to an inhibition of platelet adhesion. Our results reveal that nanopatterns enable the inhibition of platelet activation on surfaces, thus implying that development in nanotexturing of storage bags can extend the lifetime of platelet concentrates.


Assuntos
Plaquetas , Adesividade Plaquetária , Plaquetas/metabolismo , Microscopia de Força Atômica , Ativação Plaquetária
8.
Nanomaterials (Basel) ; 12(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159851

RESUMO

In this study, we report on the alignment properties of nematic liquid crystals on various transparent structured sapphire layers formed by laser-induced periodic surface structures (LIPSS). One-dimensional LIPSS (1D-LSFL) are generated by infrared femtosecond laser pulses along parallel lines covering an area of 5 × 5 mm2, with a line spacing that is varied between 7 and 17 µm. These periodic structures, employed as alignment layers, have a spatial periodicity of about 980 nm, a modulation depth of about 100 nm, and exhibit a high quality due to being characterized by a high degree of homogeneity and parallelism of the structured features. It is found that such alignment layers of the sapphire surface lead to a decreasing azimuthal anchoring energy, when the width of the unstructured gap is increased. Modifying the sapphire surface by an ITO-coating with further deposition of a polyimide film increases the azimuthal anchoring energy by a factor of about four up to Wφ ~ 4.25 × 10-6 J/m2, when the minimum width of the unstructured gap is 7 µm. Comprehensive measurements and comparisons of the azimuthal anchoring energy as well as the pretilt angle for the 1D-LSFL, unstructured gaps, and entire areas depending on the width of unstructured gaps are presented and discussed.

9.
Materials (Basel) ; 14(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34640231

RESUMO

Implants and materials are indispensable in trauma and orthopedic surgery. The continuous improvements of implant design have resulted in an optimized mechanical function that supports tissue healing and restoration of function. One of the still unsolved problems with using implants and materials is infection. Trauma and material implantation change the local inflammatory situation and enable bacterial survival and material colonization. The main pathogen in orthopedic infections is Staphylococcus aureus. The research efforts to optimize antimicrobial surfaces and to develop new anti-infective strategies are enormous. This mini-review focuses on the publications from 2021 with the keywords S. aureus AND (surface modification OR drug delivery) AND (orthopedics OR trauma) AND (implants OR nails OR devices). The PubMed search yielded 16 original publications and two reviews. The original papers reported the development and testing of anti-infective surfaces and materials: five studies described an implant surface modification, three developed an implant coating for local antibiotic release, the combination of both is reported in three papers, while five publications are on antibacterial materials but not metallic implants. One review is a systematic review on the prevention of stainless-steel implant-associated infections, the other addressed the possibilities of mixed oxide nanotubes. The complexity of the approaches differs and six of them showed efficacy in animal studies.

10.
Materials (Basel) ; 14(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34501069

RESUMO

Tailored intensity profiles within the focal spot of the laser beam offer great potential for a well-defined control of the interaction process between laser radiation and material, and thus for improving the processing results. The present paper discusses a novel refractive beam-shaping element that provides different squared intensity distributions converted from the Gaussian output beam of the utilized femtosecond (fs) laser. Using the examples of surface structuring of stainless-steel on the micro- and nano-scale, the suitability of the beam-shaping element for fs-laser material processing with a conventional f-Theta lens is demonstrated. In this context, it was shown that the experimental structuring results are in good agreement with beam profile measurements and numerical simulations of the beam-shaping unit. In addition, the experimental results reveal the improvement of laser processing in terms of a significantly reduced processing time during surface nano-structuring and the possibility to control the ablation geometry during the fabrication of micro-channels.

11.
Materials (Basel) ; 14(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209319

RESUMO

Micro/nano structuring of KrF Excimer laser-irradiated Aluminum (Al) has been correlated with laser-produced structural and mechanical changes. The effect of non-reactive Argon (Ar) and reactive Oxygen (O2) environments on the surface, structural and mechanical characteristics of nano-second pulsed laser-ablated Aluminum (Al) has been revealed. KrF Excimer laser with pulse duration 20 ns, central wavelength of 248 nm and repetition rate of was utilized for this purpose. Exposure of targets has been carried out for 0.86, 1, 1.13 and 1.27 J·cm-2 laser fluences in non-reactive (Ar) and reactive (O2) ambient environments at a pressure of 100 torr. A variety of characteristics of the irradiated targets like the morphology of the surface, chemical composition, crystallinity and nano hardness were investigated by using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffractometer (XRD), Raman spectroscopy and Nanohardness tester techniques, respectively. The nature (reactive or non-reactive) and pressure of gas played an important role in modification of materials. In this study, a strong correlation is observed between the surface structuring, chemical composition, residual stress variation and the variation in hardness of Al surface after ablation in both ambient (Ar, O2). In the case of reactive environment (O2), the interplay among the deposition of laser energy and species of plasma of ambient gas enhances chemical reactivity, which causes the formation of oxides of aluminum (AlO, Al2O3) with high mechanical strength. That makes it useful in the field of process and aerospace industry as well as in surface engineering.

12.
Nanomaterials (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946520

RESUMO

Mid-infrared (MIR) wavelengths (2-10 µm) open up a new paradigm for femtosecond laser-solid interactions. On a fundamental level, compared to the ubiquitous near-IR (NIR) or visible (VIS) laser interactions, MIR photon energies render semiconductors to behave like high bandgap materials, while driving conduction band electrons harder due to the λ2 scaling of the ponderomotive energy. From an applications perspective, many VIS/NIR opaque materials are transparent for MIR. This allows sub-surface modifications for waveguide writing while simultaneously extending interactions to higher order processes. Here, we present the formation of an extreme sub-wavelength structure formation (∼λ/100) on a single crystal silicon surface by a 3600 nm MIR femtosecond laser with a pulse duration of 200 fs. The 50-100 nm linear structures were aligned parallel to the laser polarization direction with a quasi-periodicity of 700 nm. The dependence of the structure on the native oxide, laser pulse number, and polarization were studied. The properties of the structures were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), cross-sectional transmission electron-microscopy (CS-TEM), electron diffraction (ED), and energy-dispersive X-ray spectroscopy (EDX). As traditional models for the formation of laser induced periodic surface structure do not explain this structure formation, new theoretical efforts are needed.

13.
ACS Appl Mater Interfaces ; 13(18): 21924-21935, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929833

RESUMO

Active hybrid composites represent a novel class of smart materials used to design morphing surfaces, opening up new applications in the aircraft and automotive industries. The bending of the active hybrid composite is induced by the contraction of electrically activated shape memory alloy (SMA) wires, which are placed with an offset to the neutral axis of the composite. Therefore, the adhesion strength between the SMA wire and the surrounding polymer matrix is crucial to the load transfer and the functionality of the composite. Thus, the interface adhesion strength is of great importance for the performance and the actuation potential of active hybrid composites. In this work, the surface of a commercially available one-way effect NiTi SMA wire with a diameter of 1 mm was structured by selective electrochemical etching that preferably starts at defect sites, leaving the most thermodynamically stable surfaces of the wire intact. The created etch pits lead to an increase in the surface area of the wire and a mechanical interlocking with the polymer, resulting in a combination of adhesive and cohesive failure modes after a pull-out test. Consequently, the force of the first failure determined by an optical stress measurement was increased by more than 3 times when compared to the as-delivered SMA wire. The actuation characterization test showed that approximately the same work capacity could be retrieved from structured SMA wires. Moreover, structured SMA wires exhibited the same shape of the stress-strain curve as the as-delivered SMA wire, and the mechanical performance was not influenced by the structuring process. The austenite start As and austenite finish Af transformation temperatures were also not found to be affected by the structuring process. The formation of etching pits with different geometries and densities was discussed with regard to the kinetics of oxide formation and dissolution.

14.
Micromachines (Basel) ; 12(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805382

RESUMO

Laser structuring by remelting (WaveShape) is a manufacturing process for metal surfaces in which structures are generated without material removal. The structuring principle is based on the controlled motion of the three-phase line in the area of the solidification front. The contour of the solidification front is imprinted into the remelting track during the continuous solidification process. Typically, harmonic surface structures in the form of sinusoidal oscillations are generated by means of WaveShape with virtually no material loss. However, a significant shape deviation is often observed over a wide range of process parameters. In this study, it was found that much of the shape deviation is concentrated at a spatial wavelength equal to half the spatial wavelength used for structuring. Therefore, an approach to reduce the shape deviations was specifically investigated by superimposing a compensation signal on the harmonic structuring signal. In this approach, a compensation signal with half the spatial wavelength was varied in phase and amplitude and superimposed on the structuring signal. Amplitude and phase shift of the compensation signal were further investigated for selected laser beam diameters and spatial wavelengths. This demonstrated that a shape deviation of harmonic surface structures on titanium alloy Ti6Al4V could be reduced by up to 91% by means of an adapted compensation signal.

15.
ACS Appl Mater Interfaces ; 12(40): 45460-45475, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32910638

RESUMO

The clingfish attaches to rough surfaces with considerable strength using an intricate suction disc, which displays complex surface geometries from structures called papillae. However, the exact role of these structures in adhesion is poorly understood. To investigate the relationship between papillae geometry and adhesive performance, we developed an image processing tool that analyzed the surface and structural complexity of papillae, which we then used to model hydrodynamic adhesion. Our tool allowed for the automated analysis of thousands of papillae in specimens across a range of body sizes. The results led us to identify spatial trends in papillae across the complex geometry of the suction disc and to establish fundamental structure-function relationships used in hydrodynamic adhesion. We found that the surface area of papillae changed within a suction disc and with fish size, but that the aspect ratios and channel width between papillae did not. Using a mathematical model, we found that the surface structures can adhere considerably when subjected to disturbances of moderate to high velocities. We concluded that a predominant role of the papillae is to leverage hydrodynamic adhesion and wet friction to reinforce the seal of the suction disc. Overall, the trends in papillae characteristics provided insights into bioinspired designs of surface microstructures for future applications in which adhesion is necessary to attach to diverse surfaces (in terrestrial or aquatic environments), even when subjected to disturbance forces of randomized directionality.


Assuntos
Órgãos dos Sentidos/química , Adesivos/química , Animais , Peixes , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
16.
ACS Appl Mater Interfaces ; 12(37): 42357-42368, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32815365

RESUMO

Natural organisms provide inspirations for various functional structures and surfaces with significant applications in multidisciplinary fields. These biological systems are generally composed of multiscale surface structures with high geometric complexity and a variety of materials, making it challenging to replicate their characteristics in engineering. This study presents a novel multiscale multimaterial 3D printing method, magnetic field-assisted stereolithography (M-SL), for fabricating hierarchical particle-polymer structures with surface features ranging from a few nanometers to millimeters or even centimeters. Taking inspiration from nature, this study describes the design and fabrication of a bioinspired multiscale hierarchical surface structure, which is characterized of microscale cones, nanoscale pores, and surface wrinkles at a few nanometers. To understand the fundamental physics underlying the hierarchical surface structure fabrication in the proposed M-SL process, the complexities among the M-SL process parameters, material parameters, and printed geometries are discussed. The accuracy of the developed printing method is investigated by comparing the printed geometries and digital designs. Effects of the printed hierarchical surface structure on hydrophobicity and cell viability were characterized and discussed. It was found that the highly hierarchical surface structure changed the polymer composite surface from hydrophilic (contact angle: ∼38°) to hydrophobic (∼146°). In addition, the hierarchical surface structure also created a better environment for cell attachment and growth, with 900% more living cells at 72 h after cell seeding, compared with cells on the nonstructured smooth surface. Local and selective cell seeding can also be enabled by the surface structure design. Experimental results validated the effectiveness of the M-SL 3D printing method on fabricating multimaterial functional objects with hierarchically structured surfaces for a wide spectrum of applications.


Assuntos
Células Endoteliais/química , Nanopartículas de Magnetita/química , Polímeros/química , Sobrevivência Celular , Células Endoteliais/citologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Campos Magnéticos , Tamanho da Partícula , Impressão Tridimensional , Estereoisomerismo , Propriedades de Superfície
17.
Materials (Basel) ; 13(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397245

RESUMO

The interlaminar strength of mechanically interlocked polymer-metal interfaces is strongly dependent on the surface structure of the metal component. Therefore, this contribution assesses the suitability of the fractal dimension for quantification of the surface structure, as well as interlaminar strength prediction of aluminum/polyamide 6 polymer-metal hybrids. Seven different surface structures, manufactured by mechanical blasting, combined mechanical blasting and etching, thermal spraying, and laser ablation, are investigated. The experiments are carried out on a butt-bonded hollow cylinder testing method that allows shear and tensile strength determination with one specific specimen geometry. The fractal dimension of the metal surfaces is derived from cross-sectional images. For comparison, the surface roughness slope is determined and related to the interlaminar strength. Finally, a fracture analysis is conducted. For the investigated material combination, the experimental results indicate that the fractal dimension is an appropriate measure for predicting the interlaminar strength.

18.
J Biomed Mater Res B Appl Biomater ; 108(5): 1790-1800, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31774245

RESUMO

The hybrid technology combines an efficient material-removal process and implant surface treatment by the laser reducing time of manufacture process compared to currently used machining technologies. It also permits precise structuring of the implant material surface. Six structures of the Ti6Al4V ELI surface were designed and studied how the structure topography prepared with the hybrid technology affected the Escherichia coli adhesion to the surface and viability, as well as the growth, adhesion, and viability of human osteogenic Saos-2 cells cultured on the investigated surfaces. Results have confirmed that the microtopography of medical titanium alloy plays a beneficial role in bacterial adhesion and viability (number of bacteria found on reference surface: [5.9 ± 0.44] × 106 CFU/ml, sample no. 3: [8.8 ± 0.93] × 104 CFU/ml, and sample no. 5: [1.2 ± 0.23] × 107 CFU/ml; CFU - Colony Forming Unit). All tested structured surfaces enabled good cell attachment and proliferation of Saos-2 cells (viability of Saos-2 cells [% of control] for reference surface: 81.93%; sample no. 3: 75% and sample no. 5: 100%). Transcriptome analysis of genes commonly expressed in the process of osseointegration demonstrated that the use of hybrid technology allows designing structures that enhance osseointegration but it should be coupled with other methods of preventing bacterial growth, or with a different strategy to limit microbial colonization with the satisfactory osseointegration potential.


Assuntos
Ligas/química , Materiais Revestidos Biocompatíveis/química , Titânio/química , Aderência Bacteriana , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Escherichia coli , Humanos , Lasers , Osteogênese , Processos Fotoquímicos , Próteses e Implantes , Propriedades de Superfície
19.
Molecules ; 24(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841576

RESUMO

In this study, we investigate how a surface structure underneath a surface-attached polymer coating affects the bioactivity of the resulting material. To that end, structured surfaces were fabricated using colloidal lithography (lateral dimensions: 200 nm to 1 µm, height ~15 to 50 nm). The surface structures were further functionalized either with antimicrobial, cell-adhesive polycations or with protein-repellent polyzwitterions. The materials thus obtained were compared to non-functionalized structured surfaces and unstructured polymer monolayers. Their physical properties were studied by contact-angle measurements and atomic force microscopy (AFM). Protein adhesion was studied by surface plasmon resonance spectroscopy, and the antimicrobial activity against Escherichia coli bacteria was tested. The growth of human mucosal gingiva keratinocytes on the materials was analyzed using the Alamar blue assay, optical microscopy, and live-dead staining. The data shows that the underlying surface structure itself reduced protein adhesion and also bacterial adhesion, as evidenced by increased antimicrobial activity. It also enhanced cell adhesion to the surfaces. Particularly in combination with the adhesive polycations, the surfaces increased the cell growth compared to the unstructured reference materials. Thus, functionalizing structured surfaces with adhesive polymer could be a valuable tool for improved tissue integration.


Assuntos
Polímeros/química , Propriedades de Superfície , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/química , Sobrevivência Celular , Queratinócitos/metabolismo , Microscopia de Força Atômica , Proteínas/química , Ressonância de Plasmônio de Superfície
20.
Materials (Basel) ; 11(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518060

RESUMO

A novel additive surface structuring process is devised, which involves localized, intense femtosecond laser irradiation. The irradiation induces a phase explosion of the material being irradiated, and a subsequent ejection of the ablative species that are used as additive building blocks. The ejected species are deposited and accumulated in the vicinity of the ablation site. This redistribution of the material can be repeated and controlled by raster scanning and multiple pulse irradiation. The deposition and accumulation cause the formation of µm-scale three-dimensional structures that surpass the initial surface level. The above-mentioned ablation, deposition, and accumulation all together constitute the proposed additive surface structuring process. In addition, the geometry of the three-dimensional structures can be further modified, if desirable, by a subsequent substractive ablation process. Microstructural analysis reveals a quasi-seamless conjugation between the surface where the structures grow and the structures additively grown by this method, and hence indicates the mechanic robustness of these structures. As a proof of concept, a sub-mm sized re-entrant structure and pillars are fabricated on aluminum substrate by this method. Single units as well as arrayed structures with arbitrary pattern lattice geometry are easily implemented in this additive surface structuring scheme. Engineered surface with desired functionalities can be realized by using this means, i.e., a surface with arrayed pillars being rendered with superhydrophobicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA