Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673825

RESUMO

This work is devoted to magnesium oxide (MgO) nanoparticles (NPs) for their use as additives for bone implants. Extracts from four different widely used plants, including Aloe vera, Echeveria elegans, Sansevieria trifasciata, and Sedum morganianum, were evaluated for their ability to facilitate the "green synthesis" of MgO nanoparticles. The thermal stability and decomposition behavior of the MgONPs were analyzed by thermogravimetric analysis (TGA). Structure characterization was performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), and Raman scattering spectroscopy (RS). Morphology was studied by scanning electron microscopy (SEM). The photocatalytic activity of MgO nanoparticles was investigated based on the degradation of methyl orange (MeO) using UV-Vis spectroscopy. Surface-enhanced Raman scattering spectroscopy (SERS) was used to monitor the adsorption of L-phenylalanine (L-Phe) on the surface of MgONPs. The calculated enhancement factor (EF) is up to 102 orders of magnitude for MgO. This is the first work showing the SERS spectra of a chemical compound immobilized on the surface of MgO nanoparticles.


Assuntos
Regeneração Óssea , Química Verde , Óxido de Magnésio , Extratos Vegetais , Análise Espectral Raman , Óxido de Magnésio/química , Química Verde/métodos , Regeneração Óssea/efeitos dos fármacos , Extratos Vegetais/química , Nanopartículas/química , Nanopartículas Metálicas/química , Difração de Raios X
2.
Small ; : e2306045, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009519

RESUMO

Plexcitonic nanoparticles exhibit strong light-matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light-matter interactions are investigated by UV-visible and surface-enhanced Raman scattering (SERS) spectroscopies, supported by finite-difference time-domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J-aggregates with near-zero-refractive index. As plexcitonic nanostructures nanorattles are employed, based on J-aggregates of the cyanine dye 5,5,6,6-tetrachloro-1,1-diethyl-3,3-bis(4-sulfobutyl)benzimidazolocarbocyanine (TDBC) and plasmonic silver-coated gold nanorods, confined within mesoporous silica shells, which facilitate the adsorption of the J-aggregates onto the metallic nanorod surface, while providing high colloidal stability. Electromagnetic simulations show that the electromagnetic field is strongly confined inside the J-aggregate layer, at wavelengths near the upper plexcitonic mode, but it is damped toward the J-aggregate/water interface at the lower plexcitonic mode. This behavior is ascribed to the sharp variation of dielectric properties of the J-aggregate shell close to the plasmon resonance, which leads to a high opposite refractive index contrast between water and the TDBC shell, at the upper and the lower plexcitonic modes. This behavior is responsible for the high SERS efficiency of the plexcitonic nanorattles under both 633 nm and 532 nm laser illumination. SERS analysis showed a detection sensitivity down to the single-nanoparticle level and, therefore, an exceptionally high average SERS intensity per particle. These findings may open new opportunities for ultrasensitive biosensing and bioimaging, as superbright and highly stable optical labels based on the strong coupling effect.

3.
Anal Biochem ; 680: 115314, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678582

RESUMO

Herein, we developed a concise, time-efficient, and high selective assay for detecting Fe2+ through its triggered surface plasmon-assisted reduction reaction of p-nitrothiophenol (PNTP) to p,p'-dimercaptoazobenzene (DMAB) on the surface of gold nanoparticles (AuNPs) based on surface-enhanced Raman scattering (SERS) spectroscopy. When Fe2+ was added to the PNTP-AuNPs system, the appearance of three characteristic peaks at 1142, 1392, and 1440 cm-1 attributed to DMAB demonstrated that Fe2+ induced the catalytic coupling reaction of PNTP. The Raman intensity ratio of the peak at 1142 cm-1 to the peak at 1336 cm-1 and the concentration of Fe2+ presented a good linear response from 10 to 100 µM with a limit of detection (LOD) of 0.35 µM. More importantly, the entire detection process can be completed within 2 min and further successfully used for the detection of Fe2+ in river water.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Ouro , Anticorpos
4.
Biosensors (Basel) ; 13(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37754129

RESUMO

The NQ21 peptide has relatively recently attracted attention in the biomedical sphere due to its prospects for facilitating the engineering of the HIV1 vaccine and ELISA test. Today, there is still a need for a reliable and fast methodology that reveals the secondary structure of this analyte at the low concentrations conventionally used in vaccines and immunological assays. The present research determined the differences between the surface-enhanced Raman scattering (SERS) spectra of NQ21 peptide molecules adsorbed on solid SERS-active substrates depending on their geometry and composition. The ultimate goal of our research was to propose an algorithm and SERS-active material for structural analysis of peptides. Phosphate buffer solutions of the 30 µg/mL NQ21 peptide at different pH levels were used for the SERS measurements, with silver particles on mesoporous silicon and gold-coated "nanovoids" in macroporous silicon. The SERS analysis of the NQ21 peptide was carried out by collecting the SERS spectra maps. The map assessment with an originally developed algorithm resulted in defining the effect of the substrate on the secondary structure of the analyte molecules. Silver particles are recommended for peptide detection if it is not urgent to precisely reveal all the characteristic bands, because they provide greater enhancement but are accompanied by analyte destruction. If the goal is to carefully study the secondary structure and composition of the peptide, it is better to use SERS-active gold-coated "nanovoids". Objective results can be obtained by collecting at least three 15 × 15 maps of the SERS spectra of a given peptide on substrates from different batches.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Ouro/química , Silício , Análise Espectral Raman/métodos , Peptídeos , Nanopartículas Metálicas/química
5.
Arch Biochem Biophys ; 728: 109353, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35853481

RESUMO

Myeloperoxidase (MPO), an oxidant-producing enzyme of neutrophils, has been shown to prime platelet activity promoting immunothrombosis. Native MPO is a homodimer, consisting of two identical protomers (monomer) connected by a single disulfide bond. But in inflammatory foci, MPO can be found both in the form of a monomer and in the form of a dimer. Beside MPO can also be in complexes with other molecules and be modified by oxidants, which ultimately affect its physicochemical properties and functions. Here we compared the effects of various forms of MPO as well as MPO in complex with ceruloplasmin (CP), a physiological inhibitor of MPO, on the platelet activity. Monomeric MPO (hemi-MPO) was obtained by treating the dimeric MPO by reductive alkylation. MPO was modified with HOCl in a molar ratio of 1:100 (MPO-HOCl). Using surface-enhanced Raman scattering (SERS) spectroscopy we showed that peaks at about 510 and 526 cm-1 corresponded to disulfide bond was recognizable in the SERS-spectra of dimeric MPO, absent in the spectrum of hemi-MPO and less intense in the spectra of MPO-HOCl, which indicates the partial decomposition of dimeric MPO with a disulfide bond cleavage under the HOCl modification. It was shown hemi-MPO to a lesser extent than dimeric MPO bound to platelets and enhanced their agonist-induced aggregation and platelet-neutrophil aggregate formation. MPO modified by HOCl and MPO in complex with CP did not bind to platelets and have no effect on platelet activity. Thus, the modification of MPO by HOCl, its presence in monomeric form as well as in complex with CP reduces MPO effect on platelet function and consequently decreases the risk of thrombosis in inflammatory foci.


Assuntos
Neutrófilos , Peroxidase , Corantes , Dissulfetos , Ácido Hipocloroso , Oxidantes , Ativação Plaquetária
6.
Sensors (Basel) ; 22(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062448

RESUMO

We present a facile approach for the determination of the electromagnetic field enhancement of nanostructured TiN electrodes. As model system, TiN with partially collapsed nanotube structure obtained from nitridation of TiO2 nanotube arrays was used. Using surface-enhanced Raman scattering (SERS) spectroscopy, the electromagnetic field enhancement factors (EFs) of the substrate across the optical region were determined. The non-surface binding SERS reporter group azidobenzene was chosen, for which contributions from the chemical enhancement effect can be minimized. Derived EFs correlated with the electronic absorption profile and reached 3.9 at 786 nm excitation. Near-field enhancement and far-field absorption simulated with rigorous coupled wave analysis showed good agreement with the experimental observations. The major optical activity of TiN was concluded to originate from collective localized plasmonic modes at ca. 700 nm arising from the specific nanostructure.

7.
Small Methods ; 5(10): e2100453, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34927949

RESUMO

Lattice plasmons, i.e., diffractively coupled localized surface plasmon resonances, occur in long-range ordered plasmonic nanostructures such as 1D and 2D periodic lattices. Such far-field coupled resonances can be employed for ultrasensitive surface-enhanced Raman spectroscopy (SERS), provided they are spectrally matched to the excitation wavelength. The spectral positions of lattice plasmon modes critically depend on the lattice period and uniformity, owing to their pronounced sensitivity to structural disorder. We report the fabrication of superlattices by templated self-assembly of gold nanoparticles on a flexible support, with tunable lattice-plasmon resonances by means of macroscopic strain. We demonstrate that the highest SERS performance is achieved by matching the lattice plasmon mode to the excitation wavelength, by post-assembly fine-tuning of long-range structural parameters. Both asymmetric and symmetric lattice deformations can be used to adapt a single lattice structure to both red-shifted and blue-shifted excitation lines, as exemplified by lattice expansion and contraction, respectively. This proof-of-principle study represents a basis for alternative designs of adaptive functional nanostructures with mechanically tunable lattice resonances using strain as a macroscopic control parameter.

8.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063866

RESUMO

Dendritic forest-like Ag nanostructures were deposited on a silicon wafer through fluoride-assisted galvanic replacement reaction (FAGRR) in aqueous AgNO3 and buffered oxide etchant. The prepared nanostructures were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma-optical emission spectroscopy, a surface profiler (alpha step), and X-ray diffraction. Additionally, the dendritic forest-like Ag nanostructures were characterized using surface-enhanced Raman scattering (SERS) when a 4-mercaptobenzoic acid (4-MBA) monolayer was adsorbed on the Ag surface. The Ag nanostructures exhibited intense SERS signal from 4-MBA because of their rough surface, and this intense signal led to an intense local electromagnetic field upon electromagnetic excitation. The enhancement factor for 4-MBA molecules adsorbed on the Ag nanostructures was calculated to be 9.18 × 108. Furthermore, common Raman reporters such as rhodamine 6G, 4-aminothiolphenol, 5,5'-dithiobis-2-nitrobenzoic acid, and carboxyfluorescein (FAM) were characterized on these dendritic forest-like Ag nanostructures, leading to the development of an ultrasensitive SERS-based DNA sensor with a limit of detection of 33.5 nM of 15-mer oligonucleotide.

9.
Chem Rec ; 21(4): 797-819, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33539663

RESUMO

In this review, we focus on the summary of catalytic reaction driven by surface plasmons and plexciton, where the plexciton is the interaction between plasmon and exciton. We first review the reduction and oxidation reactions driven by plasmons, and analyze the role of plasmons in the two reactions. We then summarize the recent research on the surface catalytic reactions driven by plasmon-exciton coupling and discuss the promotion effect of coupling interaction in oxidation reaction and reduction reaction. The coupling effect of plasmons and excitons can successfully improve the efficiency of catalytic reactions. Finally, this paper demonstrates the research progress in the electrooptical synergic plasmon-exciton co-driven surface catalytic reactions.

10.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499047

RESUMO

Epidermal growth factor receptor (EGFR) is estimated to be overexpressed in 60~80% of colorectal cancer (CRC), which is associated with a poor prognosis. Anti-EGFR targeted monoclonal antibodies (cetuximab and panitumumab) have played an important role in the treatment of metastatic CRC. However, the therapeutic response of anti-EGFR monoclonal antibodies is limited due to multiple resistance mechanisms. With the discovery of new functions for gold nanoparticles (AuNPs), we hypothesize that cetuximab-conjugated AuNPs (cetuximab-AuNPs) will not only improve the cytotoxicity for cancer cells, but also introduce expression change of the related biomarkers on cancer cell surface. In this contribution, we investigated the size-dependent cytotoxicity of cetuximab-AuNPs to CRC cell line (HT-29), while also monitored the expression of cell surface biomarkers in response to treatment with cetuximab and cetuximab-AuNPs. AuNPs with the size of 60 nm showed the highest impact for cell cytotoxicity, which was tested by cell counting kit-8 (CCK-8) assay. Three cell surface biomarkers including epithelial cell adhesion molecule (EpCAM), melanoma cell adhesion molecule (MCAM), and human epidermal growth factor receptor-3 (HER-3) were found to be expressed at higher heterogeneity when cetuximab was conjugated to AuNPs. Both surface-enhanced Raman scattering/spectroscopy (SERS) and flow cytometry demonstrated the correlation of cell surface biomarkers in response to the drug treatment. We thus believe this study provides powerful potential for drug-conjugated AuNPs to enhance cancer prognosis and therapy.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Cetuximab/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas Metálicas/administração & dosagem , Biomarcadores Tumorais/metabolismo , Antígeno CD146/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Ouro , Células HT29 , Humanos , Nanopartículas Metálicas/ultraestrutura , Nanoconjugados/administração & dosagem , Nanoconjugados/ultraestrutura , Tamanho da Partícula , Fenótipo , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise Espectral Raman
11.
Anal Chim Acta ; 1134: 34-40, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33059864

RESUMO

Urinary 5-hydroxyindole-3-acetic acid (5-HIAA) is a marker for diagnosis of patients with carcinoid tumors. In clinical practice, a simple colorimetric assay has widely been utilized for urinary 5-HIAA via its reaction with 1-nitroso-2-naphthol (NNa) in nitrous acid medium. However, this colorimetric assay has been criticized for lack of specificity. Herein, we proposed a novel SERS-based method for selective detection of urinary 5-HIAA by the use of a modified nitrosonaphthol reaction, in which hydrochloric acid is substituted for nitric acid to control the reaction conditions. This slight modification is crucial to be able to detect the cationic products in the acidic reaction mixture, because the chloride-aggregated Ag colloids not only create enormous hot spots for SERS enhancement, but also improve the chemical stability of nanostructured Ag substrates in acidic environment. Under optimized conditions, the present method can detect 5-HIAA within 12 min at concentrations as low as 1.2 ng/mL, which is 1000 times lower than that of conventional colorimetric method. And more importantly, the present method exhibits specific response toward 5-HIAA against other metabolites with similar structures in the urine. The relative standard deviation (RSD) of the present method is less than 5%, suggesting the acceptable reproducibility. The recoveries ranging from 89.6% to 106.3% were obtained for spiked human urine samples with RSD of 3.7-4.9%. Furthermore, several healthy person's urine samples were also analyzed using the present method, and experimental results are in compliance with the levels recorded in a healthy population. On the basis of these results we can conclude that the present SERS-based method can provide a valuable alternative to conventional colorimetric assay for clinical diagnosis, evaluating prognosis, and monitoring of treatment in carcinoid tumors.


Assuntos
Líquidos Corporais , Colorimetria , Humanos , Ácido Hidroxi-Indolacético , Indóis , Reprodutibilidade dos Testes
12.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906807

RESUMO

The analysis of circulating tumor cells (CTCs) in the peripheral blood of cancer patients is critical in clinical research for further investigation of tumor progression and metastasis. In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate for the efficient capture and characterization of cancer cells using silver nanoparticles-reduced graphene oxide (AgNPs-rGO) composites. A pulsed laser reduction of silver nanowire-graphene oxide (AgNW-GO) mixture films induces hot-spot formations among AgNPs and artificial biointerfaces consisting of rGOs. We also use in situ electric field-assisted fabrication methods to enhance the roughness of the SERS substrate. The AgNW-GO mixture films, well suited for the proposed process due to its inherent electrophoretic motion, is adjusted between indium tin oxide (ITO) transparent electrodes and the nano-undulated surface is generated by applying direct-current (DC) electric fields during the laser process. As a result, MCF7 breast cancer cells are efficiently captured on the AgNPs-rGO substrates, about four times higher than the AgNWs-GO films, and the captured living cells are successfully analyzed by SERS spectroscopy. Our newly designed bifunctional substrate can be applied as an effective system for the capture and characterization of CTCs.


Assuntos
Nanopartículas Metálicas , Células Neoplásicas Circulantes , Análise Espectral Raman , Técnicas Biossensoriais , Grafite , Humanos , Prata
13.
ACS Appl Mater Interfaces ; 12(29): 33421-33427, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32578974

RESUMO

Probing changes of noncovalent interactions is crucial to study the binding efficiencies and strengths of (bio)molecular complexes. While surface-enhanced Raman scattering (SERS) offers unique molecular fingerprints to examine such interactions in situ, current platforms are only able to recognize hydrogen bonds because of their reliance on manual spectral identification. Here, we differentiate multiple intermolecular interactions between two interacting species by synergizing plasmonic liquid marble-based SERS platforms, chemometrics, and density functional theory. We demonstrate that characteristic 3-mercaptobenzoic acid (probe) Raman signals have distinct peak shifts upon hydrogen bonding and ionic interactions with tert-butylamine, a model interacting species. Notably, we further quantify the contributions from each noncovalent interaction coexisting in different proportions. As a proof-of-concept, we detect and categorize biologically important nucleotide bases based on molecule-specific interactions. This will potentially be useful to study how subtle changes in biomolecular interactions affect their structural and binding properties.


Assuntos
Benzoatos/química , Butilaminas/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Nanopartículas Metálicas/química , Conformação Molecular , Tamanho da Partícula , Prata/química , Análise Espectral Raman , Propriedades de Superfície
14.
ACS Sens ; 4(9): 2311-2319, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31416304

RESUMO

Olfaction is important for identifying and avoiding toxic substances in living systems. Many efforts have been made to realize artificial olfaction systems that reflect the capacity of biological systems. A sophisticated example of an artificial olfaction device is the odor compass which uses chemical sensor data to identify odor source direction. Successful odor compass designs often rely on plume-based detection and mobile robots, where active, mechanical motion of the sensor platform is employed. Passive, diffusion-based odor compasses remain elusive as detection of low analyte concentrations and quantification of small concentration gradients from within the sensor platform are necessary. Further, simultaneously identifying multiple odor sources using an odor compass remains an ongoing challenge, especially for similar analytes. Here, we show that surface-enhanced Raman scattering (SERS) sensors overcome these challenges, and we present the first SERS odor compass. Using a grid array of SERS sensors, machine learning analysis enables reliable identification of multiple odor sources arising from diffusion of analytes from one or two localized sources. Specifically, convolutional neural network and support vector machine classifier models achieve over 90% accuracy for a multiple odor source problem. This system is then used to identify the location of an Escherichia coli biofilm via its complex signature of volatile organic compounds. Thus, the fabricated SERS chemical sensors have the needed limit of detection and quantification for diffusion-based odor compasses. Solving the multiple odor source problem with a passive platform opens a path toward an Internet of things approach to monitor toxic gases and indoor pathogens.


Assuntos
Odorantes/análise , Análise Espectral Raman/métodos , Escherichia coli/química , Escherichia coli/fisiologia , Propriedades de Superfície , Compostos Orgânicos Voláteis/análise
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 201: 354-361, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29763829

RESUMO

Vibrational infrared, Raman and surface-enhanced Raman scattering (SERS) spectra of clotrimazole (CTZ) were documented and evaluated. Density-functional theory, B3LYP/6-311++G(d,p), approach was implemented to identify the possible conformations, develop the electrostatic potential map, evaluate frontier molecular orbitals and calculate the vibrational spectra of the target compound. The silver-loaded graphene was shown to be an effective SERS substrate for CTZ trace detection. The SERS spectrum showed two enhanced bands at 670 cm-1 and 700 cm-1 which confirmed the absorption of the silver substrate through chlorine and nitrogen atoms. A detection limit as low as 5 nM could be reached with a determination coefficient of 0.9988 using the band at 670 cm-1. The protein-ligand interaction with Secreted Aspartic Proteinase 2 (SAP2) of C. albicans showed that the four stable forms of CTZ maintain a free energy of binding of 6-7 kcal/mol, which could give insights into the mode of action in treating Candidiasis.


Assuntos
Clotrimazol/análise , Grafite/química , Prata/química , Análise Espectral Raman/métodos , Adsorção , Sítios de Ligação , Clotrimazol/química , Clotrimazol/metabolismo , Simulação de Acoplamento Molecular
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 156: 123-30, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26655073

RESUMO

The adsorption geometry of sodium 2-quinoxalinecarboxylate (2-QC) on iron surface was investigated by in situ surface-enhanced Raman scattering spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS) measurements. The density functional theory (DFT) calculations predicted that 2-QC ion was a highly efficient inhibitor and N as well as O atoms were the possible adsorption centers, and theoretically offered the Raman-active band position and intensity. Potential-dependent SERS results suggested that the 2-QC strongly bonded to the iron surface via the lone pair electrons of the two O atoms of the carboxylate group in a bidentate configuration with a vertical orientation at more positive potentials; However, at -1.0 V, only one O atom of the carboxylate and the neighboring N(1) atom (or very close to surface) adsorbed on the iron surface forming an unidentate configuration with a titled orientation. The ions did not remain on the iron surface at more negative potentials.

17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-481307

RESUMO

Gold nanochannels were prepared using Al2 O3 nanotubules membrane as the carrier and modified with chitosan by a classical N-(3-dimethylaminopropyl)-N-ethyl carbodiimide ( EDC)/N-hydroxysuccinimide ( NHS ) coupling reaction. The nanochannels were characterized by field emission scanning electron microscopy ( FESEM) , cyclic voltammetry and AC impedance method. The Au nanochannels modified with chitosan showed a chiral environment and can be used to separate histidine enantiomer. The effects of pore size and solution pH on the separation efficiency of histidine were investigated. To increase the detection sensitivity of D-, L-histidine, Ag nanoparticles were used to enhance the surface enhanced Raman scattering ( SERS) activity. The results showed that the chitosan-modified gold nanochannels can be used to separate chiral histidine based on this unique selective nanochannel membrane. L-Histidine and D-histidine were respectively detected by SERS at wavelengths of 1000 and 1590 cm-1 . The results showed that L-histidine and D-histidine were separated well in the mixture containing 200 μL of histidine, 100 μL of colloidal Ag and 100 μL of 80 mmol/L NaCl ( pH=7 . 59 ) with a separation efficiency of 4 . 91 .

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 133: 156-64, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24934974

RESUMO

In this communication, the fabrication of SERS-active capture matrices for the detection of perchlorate is described. The amine groups of amine-modified magnetic microparticles were used to immobilize silver colloidal particles. Once immobilized, the silver was reacted with dimethylaminoethanethiol hydrochloride (DMAH(+)Cl(-)) to form a self-assembled monolayer (SAM). The DMAH(+) SAM exhibits reasonably good selectivity for perchlorate. It was shown that calibration curves could be generated by ratioing the perchlorate peak with a DMAH(+) peak that did not change upon interaction with the perchlorate ion. Flow experiments, using Ag/DMAH(+) capture matrices held in place by a magnet, showed instantaneous response to changes in perchlorate concentration. The use of solid phase extraction (SPE) to eliminate chloride ion interference was explored.


Assuntos
Aminas/química , Nanopartículas de Magnetita/química , Percloratos/análise , Prata/química , Análise Espectral Raman/instrumentação , Compostos de Sulfidrila/química , Desenho de Equipamento , Modelos Moleculares , Extração em Fase Sólida
19.
Anal Chim Acta ; 801: 70-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24139576

RESUMO

In this communication, the fabrication of SERS-active capture matrices for the detection of hexavalent chromium is described. The amine groups of amine-modified magnetic microparticles were used to immobilize gold colloidal particles. Once immobilized, the gold was reacted with 4-(2-mercaptoethyl) pyridinium (MEP) hydrochloride to form a self-assembled monolayer (SAM). The MEP SAM exhibits great selectivity for hexavalent chromium. It was shown that calibration curves could be generated by ratioing MEP peaks that increased in intensity upon complexation with chromate with a peak that did not change. Flow experiments, using Au/MEP capture matrices held in place by a magnet, showed instantaneous response to changes in chromate concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA