Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.416
Filtrar
1.
Microb Pathog ; : 106782, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969186

RESUMO

The natural antimicrobial properties of essential oils (EOs) have contributed to the battle against multidrug-resistant microorganisms by providing new ways to develop more effective antibiotic agents. In this study, we investigated the chemical composition of Ocotea diospyrifolia essential oil (OdOE) and its antimicrobial properties combined with amikacin (AMK). Through gas chromatography-mass spectrometry (GCMS) analysis, the primary constituents of OdOE were identified as α-bisabolol (45.8%), ß-bisabolene (9.4%), γ-elemene (7.6%), (Z)- ß-farnesene (5.2%), spathulenol (3.5%), (Z)-caryophyllene (3.3%), and (E)-caryophyllene (3.1%). In vitro assessments showed that the combined administration of OdOE and AMK exerted a synergistic antibacterial effect on the multidrug-resistant K. pneumoniae strain. This synergistic effect demonstrated bacteriostatic action. OdEO combined with amikacin showed protein extravasation within 2 h of treatment, leading to bacterial death, which was determined by a reduction in viable cell count. The effective concentrations showed hemocompatibility. In vivo assessments using Caenorhabditis elegans as a model showed the survival of 85% of infected nematodes. Therefore, the combination OdEO combined with amikacin exhibited antimicrobial activity against a multidrug-resistant K. pneumoniae strain. Thus, OdOE is a promising agent that may be considered for development of antimicrobial treatment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38980947

RESUMO

Lightweight ablative thermal protection materials (TPMs), which can resist long-term ablation in an oxidizing atmosphere, are urgently required for aerospace vehicles. Herein, carbon fabric/phenol-formaldehyde resin/siloxane aerogels (CF/PFA/SiA) nanocomposite with interpenetrating network multiscale structure was developed via simple and efficient sol-gel followed by atmospheric pressure drying. The ternary networks structurally interpenetrating in macro-, micron-, and the nanoscales, chemically cross-linking at the molecular scale, and silica layer generated by in situ heating synergistically bring about low density (∼0.3 g cm-3), enhanced mechanical properties, thermal stability, and oxidation resistance, and a low thermal conductivity of 81 mW m-1 K-1. More intriguingly, good thermal protection with near-zero surface recession at 1300 °C for 300 s and remarkable thermal insulation with a back-side temperature below 60 °C at 20 mm thickness. The interpenetrating network strategy can be extended to other porous components with excellent high-temperature properties, such as ZrO2 and SiC, which will facilitate the improvement of lightweight ablative TPMs. Moreover, it may open a new avenue for fabricating multifunctional binary, ternary, and even multiple interpenetrating network materials.

3.
Oncol Res ; 32(7): 1231-1237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948023

RESUMO

Background: Despite the availability of chemotherapy drugs such as 5-fluorouracil (5-FU), the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects. This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines (AGS and EPG85-257). Materials and Methods: In this in vitro study, AGS and EPG85-257 cells were treated with different concentrations of celastrol, 5-FU, and their combination. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The synergistic effect of 5-FU and celastrol was studied using Compusyn software. The DNA content at different phases of the cell cycle and apoptosis rate was measured using flow cytometry. Results: Co-treatment with low concentrations (10% inhibitory concentration (IC10)) of celastrol and 5-FU significantly reduced IC50 (p < 0.05) so that 48 h after treatment, IC50 was calculated at 3.77 and 6.9 µM for celastrol, 20.7 and 11.6 µM for 5-FU, and 5.03 and 4.57 µM for their combination for AGS and EPG85-257 cells, respectively. The mean percentage of apoptosis for AGS cells treated with celastrol, 5-FU, and their combination was obtained 23.9, 41.2, and 61.9, and for EPG85-257 cells 5.65, 46.9, and 55.7, respectively. In addition, the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase. Conclusions: Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells, additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.


Assuntos
Apoptose , Proliferação de Células , Sinergismo Farmacológico , Fluoruracila , Triterpenos Pentacíclicos , Neoplasias Gástricas , Triterpenos , Humanos , Triterpenos Pentacíclicos/farmacologia , Fluoruracila/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Triterpenos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ciclo Celular/efeitos dos fármacos
4.
Pflugers Arch ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963545

RESUMO

6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.

5.
Microb Cell Fact ; 23(1): 195, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971787

RESUMO

This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.


Assuntos
Testes de Sensibilidade Microbiana , Nanocompostos , Prata , Soro do Leite , Nanocompostos/química , Prata/química , Prata/farmacologia , Soro do Leite/química , Soro do Leite/metabolismo , Lactobacillus acidophilus/efeitos dos fármacos , Lactobacillus acidophilus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Nanopartículas Metálicas/química , Lactobacillus/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Talanta ; 278: 126512, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38970964

RESUMO

The tetracycline (TC) residue in water environment has caused serious public safety issue. Thus, efficient sensing of TC is highly desirable for environmental protection. Herein, biomass-derived nitrogen-doped carbon dots (N-CDs) synthesized from natural Ophiopogon japonicus f. nanus (O. japonicus) were used for TC detection. The unique solvent synergism efficiently enhanced detection sensitivity, and the detailed sensing mechanism was deeply investigated. The blue fluorescence of N-CDs was quenched by TC via static quenching and inner filter effect. Moreover, the enhancement of green fluorescence from deprotonated TC was firstly proposed and sufficiently verified. The solvent effect of N-methyl pyrrolidone (NMP) and the fluorescence resonance energy transfer (FRET) with N-CDs achieved an instantaneous enhancement of the green emission by 64-fold. Accordingly, a ratiometric fluorescence method was constructed for rapid and sensitive sensing of TC with a low detection limit of 6.3 nM within 60 s. The synergistic effect of N-CDs and solvent assistance significantly improved the sensitivity by 7-fold compared to that in water. Remarkably, the biomass-derived N-CDs displayed low cost, good solubility, and desired stability. The deep insights into the synergism with solvent can provide prospects for the utilization of biomass-based materials and broaden the development of advanced sensors with promising applications.

7.
Biomed Pharmacother ; 177: 117076, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971011

RESUMO

Hyperactive FMS-like receptor tyrosine kinase-3 mutants with internal tandem duplications (FLT3-ITD) are frequent driver mutations of aggressive acute myeloid leukemia (AML). Inhibitors of FLT3 produce promising results in rationally designed cotreatment schemes. Since FLT3-ITD modulates DNA replication and DNA repair, valid anti-leukemia strategies could rely on a combined inhibition of FLT3-ITD and regulators of cell cycle progression and DNA integrity. These include the WEE1 kinase which controls cell cycle progression, nucleotide synthesis, and DNA replication origin firing. We investigated how pharmacological inhibition of FLT3 and WEE1 affected the survival and genomic integrity of AML cell lines and primary AML cells. We reveal that promising clinical grade and preclinical inhibitors of FLT3 and WEE1 synergistically trigger apoptosis in leukemic cells that express FLT3-ITD. An accumulation of single and double strand DNA damage precedes this process. Mass spectrometry-based proteomic analyses show that FLT3-ITD and WEE1 sustain the expression of the ribonucleotide reductase subunit RRM2, which provides dNTPs for DNA replication. Unlike their strong pro-apoptotic effects on leukemia cells with FLT3-ITD, inhibitors of FLT3 and WEE1 do not damage healthy human blood cells and murine hematopoietic stem cells. Thus, pharmacological inhibition of FLT3-ITD and WEE1 might become an improved, rationally designed therapeutic option.

8.
Sci Rep ; 14(1): 15709, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977768

RESUMO

Honey bees are commonly co-exposed to pesticides during crop pollination, including the fungicide captan and neonicotinoid insecticide thiamethoxam. We assessed the impact of exposure to these two pesticides individually and in combination, at a range of field-realistic doses. In laboratory assays, mortality of larvae treated with captan was 80-90% greater than controls, dose-independent, and similar to mortality from the lowest dose of thiamethoxam. There was evidence of synergism (i.e., a non-additive response) from captan-thiamethoxam co-exposure at the highest dose of thiamethoxam, but not at lower doses. In the field, we exposed whole colonies to the lowest doses used in the laboratory. Exposure to captan and thiamethoxam individually and in combination resulted in minimal impacts on population growth or colony mortality, and there was no evidence of synergism or antagonism. These results suggest captan and thiamethoxam are each acutely toxic to immature honey bees, but whole colonies can potentially compensate for detrimental effects, at least at the low doses used in our field trial, or that methodological differences of the field experiment impacted results (e.g., dilution of treatments with natural pollen). If compensation occurred, further work is needed to assess how it occurred, potentially via increased queen egg laying, and whether short-term compensation leads to long-term costs. Further work is also needed for other crop pollinators that lack the social detoxification capabilities of honey bee colonies and may be less resilient to pesticides.


Assuntos
Captana , Sinergismo Farmacológico , Fungicidas Industriais , Inseticidas , Tiametoxam , Animais , Tiametoxam/toxicidade , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Inseticidas/toxicidade , Fungicidas Industriais/toxicidade , Captana/toxicidade , Larva/efeitos dos fármacos , Neonicotinoides/toxicidade , Tiazóis/toxicidade , Nitrocompostos/toxicidade
9.
Plants (Basel) ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999701

RESUMO

Essential oils (EOs) are plant metabolites with important insecticidal effects. Nevertheless, information on the efficacy of the major substances on aphids and their natural enemies is still missing. The objective of this paper is, therefore, to identify the efficacy of selected EO majority substances-ß-citronellol, carvacrol, isoeugenol, and linalool, including their binary mixtures-on the mortality and fertility of the aphid Metopolophium dirhodum, an important cereal pest. The best efficacy was proven for the binary mixture of ß-citronellol and linalool (1:1 ratio), for which the estimated LC50(90) is 0.56(1.58) mL L-1. This binary mixture applied in sublethal concentrations significantly reduced aphid fertility. It was found that the phenomenon can be attributed to ß-citronellol, as the females treated with LC30 laid 45.9% fewer nymphs, on average, compared to the control. Although ß-citronellol and linalool, including their 1:1 mixture, showed very good efficacy on aphid mortality, they were, on the other hand, very friendly to the larvae of Aphidoletes aphidimyza and Chrysoperla carnea, which are important aphid predators. Based on our results, the newly discovered synergically acting binary mixture ß-citronellol/linalool can be recommended as an efficient substance suitable for the further development of botanical insecticides used against aphids.

10.
Nutrients ; 16(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999828

RESUMO

This study aimed to investigate a synergistic anti-inflammatory effect of a citrus flavonoid nobiletin and docosahexaenoic acid (DHA), one of n-3 long-chain polyunsaturated fatty acids, in combination. Simultaneous treatment with nobiletin and DHA synergistically inhibited nitric oxide production (combination index < 0.9) by mouse macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) without cytotoxicity. On the other hand, the inhibitory effect of nobiletin and DHA in combination on proinflammatory cytokine production was not synergistic. Neither nobiletin nor DHA affected the phagocytotic activity of RAW 264.7 cells stimulated with LPS. Immunoblot analysis revealed that the inhibition potency of DHA on the phosphorylation of ERK and p38 and nuclear translocation of NF-κB is markedly enhanced by simultaneously treating with nobiletin, which may lead to the synergistic anti-inflammatory effect. Overall, our findings show the potential of the synergistic anti-inflammatory effect of nobiletin and DHA in combination.


Assuntos
Anti-Inflamatórios , Ácidos Docosa-Hexaenoicos , Sinergismo Farmacológico , Flavonas , Lipopolissacarídeos , Macrófagos , Óxido Nítrico , Animais , Camundongos , Flavonas/farmacologia , Lipopolissacarídeos/farmacologia , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Citocinas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Environ Sci Technol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984974

RESUMO

Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 µg/L) than populations from reference streams (mean EC50 67 µg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.

12.
BMC Complement Med Ther ; 24(1): 266, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997638

RESUMO

The growing global threat of antimicrobial resistance endangers both human and animal life, necessitating the urgent discovery of novel antimicrobial solutions. Medicinal plants hold promise as sources of potential antimicrobial compounds. In this study, we investigated the phytochemical constituents and microbicidal capabilities of the ethanolic extract from Nigella sativa (black seed). Gas chromatography analysis (GC) identified 11 compounds, among them thymoquinone, and thymol, contributing to antimicrobial and antioxidant properties. Antimicrobial assays demonstrated notable inhibition zones against broad spectra of bacteria, including Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Enterobacter, and Bacillus subtilis, along with potent antifungal activity against Aspergillus niger, Penicillium, and Candida albicans. Notably, when combined with antibiotics, the extract displayed exceptional synergistic antimicrobial efficacy. The black seed extract demonstrated membrane-damaging activity and disrupted virulence factors that protect microbes from antimicrobial agents, including the formation of bacterial biofilm and protease secretion. Thymoquinone, the primary active constituent of the extract, exhibited similar antimicrobial and ant virulence properties. In silico analysis targeting key regulators of quorum sensing and biofilm formation in P. aeruginosa, such as RhlG, LasR, and PqsR, showed a remarkable affinity of thymol and thymoquinone for these targets. Moreover, the N. sativa extract exhibited dose-dependent cytotoxicity against both the promastigote and amastigote forms of Leishmania tropica parasites, hinting at potential antiparasitic activity. In addition to its antimicrobial properties, the extract displayed potential antioxidant activity at a concentration of 400 µg/mL.


Assuntos
Antioxidantes , Nigella sativa , Compostos Fitoquímicos , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nigella sativa/química , Antioxidantes/farmacologia , Antioxidantes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Animais , Bactérias/efeitos dos fármacos , Sementes/química
13.
Sci Rep ; 14(1): 16007, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992147

RESUMO

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Assuntos
Ração Animal , Fezes , Solo , Urina , Animais , Fezes/química , Bovinos , Solo/química , Ovinos , Urina/química , Ração Animal/análise , Nutrientes/análise , Nutrientes/metabolismo , Ruminantes/fisiologia , Nitrogênio/metabolismo , Nitrogênio/urina , Nitrogênio/análise , Fósforo/urina , Fósforo/análise , Fósforo/metabolismo
14.
Microb Pathog ; 193: 106787, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992510

RESUMO

A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain. Among these compounds, three (2, 3and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favorable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics viaself-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.

15.
Front Oncol ; 14: 1418951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011477

RESUMO

Introduction: Diffuse pleural mesothelioma (DPM) of the pleura is a highly aggressive and treatment-resistant cancer linked to asbestos exposure. Despite multimodal treatment, the prognosis for DPM patients remains very poor, with an average survival of 2 years from diagnosis. Cisplatin, a platinum-based chemotherapy drug, is commonly used in the treatment of DPM. However, the development of resistance to cisplatin significantly limits its effectiveness, highlighting the urgent need for alternative therapeutic strategies. New selective inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) have shown promise in various malignancies by inhibiting cell cycle progression and suppressing tumor growth. Recent studies have indicated the potential of abemaciclib for DPM therapy, and a phase II clinical trial has shown preliminary encouraging results. Methods: Here, we tested abemaciclib, palbociclib, and ribociclib on a panel of DPM cell lines and non-tumor mesothelial(MET-5A) cells. Results: Specifically, we focused on abemaciclib, which was the mosteffective cytotoxic agent on all the DPM cell lines tested. Abemaciclib reduced DPM cell viability, clonogenic potential, and ability to grow as three-dimensional (3D) spheroids. In addition, abemaciclib induced prolonged effects, thereby impairing second-generation sphere formation and inducing G0/G1 arrest and apoptosis/ necrosis. Interestingly, single silencing of RB family members did not impair cell response to abemaciclib, suggesting that they likely complement each other in triggering abemaciclib's cytostatic effect. Interestingly, abemaciclib reduced the phosphorylation of AKT, which is hyperactive in DPM and synergized with the pharmacological AKT inhibitor (AKTi VIII). Abemaciclib also synergized with cisplatin and reduced the viability of DPM cells with acquired resistance to cisplatin. Discussion: Overall, our results suggest that CDK4/6 inhibitors alone or in combination with standard of care should be further explored for DPM therapy.

16.
Iran J Microbiol ; 16(2): 166-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38854979

RESUMO

Background and Objectives: Stenotrophomonas maltophilia is an opportunistic pathogen causing nosocomial infections. Diclofenac is an anti-inflammatory drug that is considered a non-antibiotic drug. This study assessed the antibacterial and antibiofilm effects of diclofenac and levofloxacin/diclofenac combination against levofloxacin resistant isolates. Materials and Methods: Minimum inhibitory concentration was determined using broth microdilution method for levofloxacin, diclofenac, and levofloxacin/diclofenac combination. Biofilm forming capacity and biofilm inhibition assay were determined. Relative gene expression was measured for efflux pump genes; smeB, and smeF genes and biofilm related genes rmlA, spgM, and rpfF without and with diclofenac and the combination. Results: Diclofenac demonstrated MIC of 1 mg/ml. The combination-with ½ MIC diclofenac-showed synergism where levofloxacin MIC undergone 16-32 fold decrease. All the isolates that overexpressed smeB and smeF showed a significant decrease in gene expression in presence of diclofenac or the combination. The mean percentage inhibition of biofilm formation with diclofenac and the combination was 40.59% and 46.49%, respectively. This agreed with biofilm related genes expression investigations. Conclusion: Diclofenac showed an antibacterial effect against Stenotrophomonas maltophilia. The combination showed in-vitro synergism, significant reduction in biofilm formation and in the relative level of gene expression. Furthermore, it can potentiate the levofloxacin activity or revert its resistance.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38847831

RESUMO

Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (Thymus vulgaris) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol's anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol's impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/ß-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol's broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.

18.
Ecol Lett ; 27(6): e14463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924275

RESUMO

Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.


Assuntos
Ecossistema , Água Doce , Atividades Humanas , Estresse Fisiológico
19.
Toxins (Basel) ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38922156

RESUMO

Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.


Assuntos
Membrana Celular , Citotoxinas , Membrana Celular/efeitos dos fármacos , Animais , Citotoxinas/química , Citotoxinas/toxicidade , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Aminoácidos/química , Sequência de Aminoácidos , Humanos
20.
Insects ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921162

RESUMO

Using semiochemicals collected from spotted lanternflies Lycorma delicatula (Hemiptera: Fulgoridae) (SLF) and deployed in the field with circle traps, we demonstrated that SLF responded to SLF pheromones: in particular, this was the case for males while seeking mates and for females while ovipositing. The attractants consisted of SLF body extract emitted from diffuser lures and SLF honeydew on burlap ribbons, collected from heavily infested locations. Traps with attractants were deployed in field sites with very light SLF infestations to avoid competing signals of pre-existing aggregations. The number of SLF equivalents emitted by each diffuser per trapping period was used in a dose-response analysis. Three trees per block received either (1) a control hexane lure and a clean ribbon, (2) a lure containing SLF extract and a clean ribbon, or (3) a lure containing SLF extract and a honeydew-laden ribbon. Ten blocks were sampled three times per week for twelve weeks. We found a significant positive dose-response by males to SLF body extract only in the presence of SLF honeydew, indicating a synergistic effect between honeydew volatiles and body volatiles. This dose-response occurred for five weeks after mating started, after which males no longer responded. Subsequently, females had a significant positive dose-response to SLF extract only in the presence of honeydew when oviposition was their primary activity, continuing for two weeks, suggesting that females may use pheromones to aggregate for oviposition. The extract in the absence of honeydew did not result in a positive dose-response, nor did the hexane control. These findings suggest that SLF respond synergistically to the combination of pheromones present in both SLF honeydew and SLF bodies. Thus, combining key components from both sources may aid the development of semiochemical lures for SLF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...