Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 494: 94-103, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569646

RESUMO

The intraparietal sulcus region, which is part of the posterior parietal cortex (PPC), has been shown to play an important role in discriminating object shapes using the fingers. Transcranial random noise stimulation (tRNS) and anodal transcranial pulsed current stimulation (tPCS) are noninvasive strategies widely used to modulate neural activity in cortical regions. Therefore, we investigated the effects of tRNS and anodal tPCS applied to left or right PPC on the tactile discrimination performance of the right index finger in 20 neurologically healthy subjects. A grating orientation task (GOT) was performed before and immediately after delivering tRNS (stimulus frequency 0.1-640 Hz) in Experiment 1 or anodal tPCS (pulse width 50 ms and inter-pulse interval 5 ms) in Experiment 2. Performing tRNS over the right PPC significantly improved discrimination performance on the GOT. Subjects were classified into low and high baseline performance groups. Conducting tRNS over the left PPC significantly reduced the GOT discrimination performance in the high-performance group. By contrast, anodal tPCS delivered to the PPC of the left and right hemispheres had no significant effect on the tactile GOT discrimination performance of the right hand. We show that transcranial electric stimulation over the PPC may improve tactile perception but the effect depends on stimulus modality, parameters, and on the stimulated hemisphere.


Assuntos
Percepção do Tato , Estimulação Transcraniana por Corrente Contínua , Estimulação Elétrica , Humanos , Lobo Parietal/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia
2.
J Clin Neurosci ; 93: 195-199, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34656247

RESUMO

Perceptual learning generally improves with training intensity, but the number of training trials sufficient for transient and long-term improvement in tactile grating orientation task (GOT) discrimination has not been systematically studied. To define reliable trial numbers for tactile discrimination learning, we compared tactile orientation discrimination performance of the right-finger following 200 and 400 training trials. Fifty-one neurologically healthy subjects were recruited. Tactile spatial acuity for orientation (parallel or orthogonal to the long axis of the finger) across different grating frequencies was assessed before, immediately after, 30 min after, and 24 h after sessions consisting of 200 training trials (50/block × 4 blocks), 400 training trials (50/block × 8 blocks), or no training (sham control). Both the 200- and 400-trial training conditions reduced the grating orientation discrimination threshold at 24 h after training. In contrast, the control condition had no effect on the grating orientation discrimination threshold. There was a negative correlation between the baseline grating orientation discrimination threshold and training-induced change in threshold (improvement) following both 200 and 400 trials. Fewer GOT trials (200) substantially prolong tactile discrimination learning, presumably by promoting the consolidation of the underlying neuroplastic mechanisms. In this widely used perceptual learning paradigm, 200 and 400 training trials appear effective for inducing short-term and long-term perceptual memory.


Assuntos
Aprendizagem por Discriminação , Percepção do Tato , Dedos , Humanos , Aprendizagem , Tato
3.
Behav Brain Res ; 375: 112168, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31442547

RESUMO

Transcranial electrical stimulation (tES) can be used to modulate inhibitory circuits in primary somatosensory cortex, resulting in improved somatosensory function. However, efficacy may depend on the specific stimulus modality and patterns. For instance, transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), and transcranial pulsed current stimulation (tPCS) were found to stably and effectively modulate neuronal excitability, while anodal transcranial direct current stimulation (tDCS) appeared less effective overall but with substantial response heterogeneity among subjects. Therefore, we compared the effects of tES applied to primary somatosensory cortex on somatosensory evoked potential paired-pulse depression (SEP-PPD) and tactile discrimination performance in 17 neurologically healthy subjects. In Experiment 1, somatosensory evoked potential N20/P25_SEP-PPD, N20_SEP-PPD, and P25_SEP-PPD responses were assessed before and immediately after anodal tDCS, tACS (stimulation frequency, 140 Hz), tRNS (stimulation frequency, 0.1-640 Hz), anodal tPCS (pulse width, 50 ms; inter-pulse interval, 5 ms), and sham stimulation applied to primary somatosensory cortex. In Experiment 2, a grating orientation task (GOT) was performed before and immediately after the same anodal tDCS, tRNS, anodal tPCS, and sham stimulation regimens. Anodal tDCS and anodal tPCS decreased N20_SEP-PPD, and tRNS increased the first N20 SEP amplitude. Furthermore, tRNS and anodal tPCS decreased GOT discrimination threshold (improved performance). These results suggest that tRNS and anodal tPCS can improve sensory perception by modulating neuronal activity in primary somatosensory cortex.


Assuntos
Córtex Somatossensorial/fisiologia , Tato/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Estimulação Elétrica/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/psicologia , Adulto Jovem
4.
Neuroscience ; 384: 262-274, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859978

RESUMO

Selective afferent activation can be used to improve somatosensory function, possibly by altering cortical inhibitory circuit activity. Peripheral electrical stimulation (PES) is widely used to induce selective afferent activation, and its effect may depend on PES intensity. Therefore, we investigated the effects of high- and low-intensity PES applied to the right index finger on tactile discrimination performance and cortical somatosensory-evoked potential paired-pulse depression (SEP-PPD) in 25 neurologically healthy subjects. In Experiment 1, a grating orientation task (GOT) was performed before and immediately after local high- and low-intensity PES (both delivered as 1-s, 20-Hz trains of 0.2-ms electrical pulses at 5-s intervals). In Experiment 2, PPD of SEP components N20/P25_SEP-PPD, N20_SEP-PPD and P25_SEP-PPD, respectively, were assessed before and immediately after high- and low-intensity PES. Improved GOT discrimination performance after high-intensity PES (reduced discrimination threshold) was associated with lower baseline performance (higher baseline discrimination threshold). Subjects were classified into low and high (baseline) GOT performance groups. Improved GOT discrimination performance in the low GOT performance group was significantly associated with a greater N20_SEP-PPD decrease (weaker PPD). Subjects were also classified into GOT improvement and GOT decrement groups. High-intensity PES decreased N20_SEP-PPD in the GOT improvement group but increased N20_SEP-PPD in the GOT decrement group. Furthermore, a greater decrease in GOT discrimination threshold was significantly associated with a greater N20_SEP-PPD decrease in the GOT improvement group. These results suggest that high-intensity PES can improve somatosensory perception in subjects with low baseline function by modulating cortical inhibitory circuits in primary somatosensory cortex.


Assuntos
Discriminação Psicológica/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Inibição Neural/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA